My bibliography
Save this item
On properties of functional principal components analysis
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
- Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
- Matieyendou Lamboni, 2023. "On Exact Distribution for Multivariate Weighted Distributions and Classification," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
- Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
- Sara López-Pintado & Ian W. McKeague, 2013. "Recovering Gradients from Sparsely Observed Functional Data," Biometrics, The International Biometric Society, vol. 69(2), pages 396-404, June.
- Peter Hall & Giles Hooker, 2016. "Truncated linear models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 637-653, June.
- Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2010. "Measures of influence for the functional linear model with scalar response," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 327-339, February.
- Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
- repec:cte:wsrepe:ws131312 is not listed on IDEAS
- Federico A. Bugni & Joel L. Horowitz, 2021.
"Permutation tests for equality of distributions of functional data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 861-877, November.
- Federico A. Bugni & Joel L. Horowitz, 2017. "Permutation tests for equality of distributions of functional data," CeMMAP working papers CWP17/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Joel L. Horowitz, 2018. "Permutation tests for equality of distributions of functional data," CeMMAP working papers CWP18/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Joel L. Horowitz, 2018. "Permutation Tests for Equality of Distributions of Functional Data," Papers 1803.00798, arXiv.org, revised Jun 2021.
- Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023.
"Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
- B. Li & S. Boubaker & Z. Liu & W. Louhichi & Y. Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Post-Print hal-04435519, HAL.
- Saart, Patrick W. & Xia, Yingcun, 2022. "Functional time series approach to analyzing asset returns co-movements," Journal of Econometrics, Elsevier, vol. 229(1), pages 127-151.
- Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
- Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
- Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
- Sztemberg-Lewandowska Mirosława, 2019. "Functional Principal Components Analysis on the Exemple of the Achievements of Students in the Years 2009-2017," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(4), pages 16-29, December.
- Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
- Arnab Bhattacharjee & Eduardo Castro & Taps Maiti & João Marques, 2014. "Endogenous spatial structure and delineation of submarkets: A new framework with application to housing markets," SEEC Discussion Papers 1403, Spatial Economics and Econometrics Centre, Heriot Watt University.
- Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei & Kong, Linglong, 2021. "Testing independence of functional variables by angle covariance," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Peter Hall & You‐Jun Yang, 2010. "Ordering and selecting components in multivariate or functional data linear prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 93-110, January.
- Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Yue Wang & Joseph G. Ibrahim & Hongtu Zhu, 2020. "Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study," Biometrics, The International Biometric Society, vol. 76(4), pages 1109-1119, December.
- Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
- Emma O'Connor & Nick Fieller & Andrew Holmes & John C. Waterton & Edward Ainscow, 2010. "Functional principal component analyses of biomedical images as outcome measures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 57-76, January.
- J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
- Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
- Petrovich, Justin & Reimherr, Matthew, 2017. "Asymptotic properties of principal component projections with repeated eigenvalues," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 42-48.
- Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
- Haozhe Zhang & Yehua Li, 2020. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Papers 2006.13489, arXiv.org, revised Jun 2021.
- Wu Wang & Ying Sun & Huixia Judy Wang, 2023. "Latent group detection in functional partially linear regression models," Biometrics, The International Biometric Society, vol. 79(1), pages 280-291, March.
- Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
- Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
- Allam, Abdelaziz & Mourid, Tahar, 2014. "Covariance operator estimation of a functional autoregressive process with random coefficients," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 1-8.
- Azizur Rahman & Depeng Jiang, 2023. "Forecasting Canadian Age-Specific Mortality Rates: Application of Functional Time Series Analysis," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
- Li, Bo & Liu, Zhenya & Teka, Hanen & Wang, Shixuan, 2023. "The evolvement of momentum effects in China: Evidence from functional data analysis," Research in International Business and Finance, Elsevier, vol. 64(C).
- Cai, Leheng & Hu, Qirui, 2024. "Simultaneous inference and uniform test for eigensystems of functional data," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
- Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
- Ruanmin Cao & Lajos Horváth & Zhenya Liu & Yuqian Zhao, 2020.
"A study of data-driven momentum and disposition effects in the Chinese stock market by functional data analysis,"
Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 335-358, January.
- Ruanmin Cao & Lajos Horváth & Zhenya Liu & Yuqian Zhao, 2020. "A study of data-driven momentum and disposition effects in the Chinese stock market by functional data analysis," Post-Print hal-03511284, HAL.
- Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
- Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
- Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013.
"Description length and dimensionality reduction in functional data analysis,"
Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
- D. S. Poskitt & Arivalzahan Sengarapillai, 2009. "Description Length and Dimensionality Reduction in Functional Data Analysis," Monash Econometrics and Business Statistics Working Papers 13/09, Monash University, Department of Econometrics and Business Statistics.
- Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
- repec:hum:wpaper:sfb649dp2016-033 is not listed on IDEAS
- Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
- Brunel, Élodie & Mas, André & Roche, Angelina, 2016. "Non-asymptotic adaptive prediction in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 208-232.
- Santiago Gall n & Jorge Barrientos, 2021. "Forecasting the Colombian Electricity Spot Price under a Functional Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 67-74.
- Jing Zhao & Sanying Feng & Yuping Hu, 2022. "Two-Sample Hypothesis Test for Functional Data," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
- Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
- Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
- Huang, Lele & Wang, Huiwen & Zheng, Andi, 2014. "The M-estimator for functional linear regression model," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 165-173.
- Andrey Feuerverger, 2016. "On Goodness of Fit for Operational Risk," International Statistical Review, International Statistical Institute, vol. 84(3), pages 434-455, December.
- Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
- Naisyin Wang, 2010. "Comments on: dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 56-59, May.
- Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
- Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
- Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
- Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
- Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
- Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
- Cindy Xin Feng & Jiguo Cao & Leah Bendell, 2011. "Exploring Spatial and Temporal Variations of Cadmium Concentrations in Pacific Oysters from British Columbia," Biometrics, The International Biometric Society, vol. 67(3), pages 1142-1152, September.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Shanshan Li & Ani Eloyan & Suresh Joel & Stewart Mostofsky & James Pekar & Susan Spear Bassett & Brian Caffo, 2012. "Analysis of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer's Disease," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
- Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Mariano J. Valderrama & Francisco A. Ocaña & Ana M. Aguilera & Francisco M. Ocaña-Peinado, 2010. "Forecasting Pollen Concentration by a Two-Step Functional Model," Biometrics, The International Biometric Society, vol. 66(2), pages 578-585, June.
- Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
- Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
- Kokoszka, Piotr & Reimherr, Matthew, 2013. "Asymptotic normality of the principal components of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1546-1562.
- Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
- Aaron Fisher & Brian Caffo & Brian Schwartz & Vadim Zipunnikov, 2016. "Fast, Exact Bootstrap Principal Component Analysis for > 1 Million," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 846-860, April.
- Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
- Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
- Ming‐Yueh Huang & Kwun Chuen Gary Chan, 2024. "Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1567-1586, December.
- repec:eca:wpaper:2013/131191 is not listed on IDEAS
- Kehui Chen & Jing Lei, 2015. "Localized Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1266-1275, September.
- Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.