IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i1d10.1007_s13253-021-00477-9.html
   My bibliography  Save this article

Function-on-Function Partial Quantile Regression

Author

Listed:
  • Ufuk Beyaztas

    (Marmara University)

  • Han Lin Shang

    (Macquarie University)

  • Aylin Alin

    (Dokuz Eylul University)

Abstract

A function-on-function linear quantile regression model, where both the response and predictors consist of random curves, is proposed by extending the classical quantile regression setting into the functional data to characterize the entire conditional distribution of functional response. In this paper, a functional partial quantile regression approach, a quantile regression analog of the functional partial least squares regression, is proposed to estimate the function-on-function linear quantile regression model. A partial quantile covariance function is first used to extract the functional partial quantile regression basis functions. The extracted basis functions are then used to obtain the functional partial quantile regression components and estimate the final model. Although the functional random variables belong to an infinite-dimensional space, they are observed in a finite set of discrete-time points in practice. Thus, in our proposal, the functional forms of the discretely observed random variables are first constructed via a finite-dimensional basis function expansion method. The functional partial quantile regression constructed using the functional random variables is approximated via the partial quantile regression constructed using the basis expansion coefficients. The proposed method uses an iterative procedure to extract the partial quantile regression components. A Bayesian information criterion is used to determine the optimum number of retained components. The proposed functional partial quantile regression model allows for more than one functional predictor in the model. However, the true form of the proposed model is unspecified, as the relevant predictors for the model are unknown in practice. Thus, a forward variable selection procedure is used to determine the significant predictors for the proposed model. Moreover, a case-sampling-based bootstrap procedure is used to construct pointwise prediction intervals for the functional response. The predictive performance of the proposed method is evaluated using several Monte Carlo experiments under different data generation processes and error distributions. The finite-sample performance of the proposed method is compared with the functional partial least squares method. Through an empirical data example, air quality data are analyzed to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00477-9
    DOI: 10.1007/s13253-021-00477-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00477-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00477-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mariano J. Valderrama & Francisco A. Ocaña & Ana M. Aguilera & Francisco M. Ocaña-Peinado, 2010. "Forecasting Pollen Concentration by a Two-Step Functional Model," Biometrics, The International Biometric Society, vol. 66(2), pages 578-585, June.
    2. Yadolah Dodge & Joe Whittaker, 2009. "Partial quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 35-57, June.
    3. Sun, Yifan & Wang, Qihua, 2020. "Function-on-function quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Hojin Yang & Veerabhadran Baladandayuthapani & Arvind U.K. Rao & Jeffrey S. Morris, 2020. "Quantile Function on Scalar Regression Analysis for Distributional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 90-106, January.
    6. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    7. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    8. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    9. Salam A. Abbas & Yunqing Xuan & Xiaomeng Song, 2019. "Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4249-4264, September.
    10. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
    11. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    12. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    13. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    14. Lehn, Friederike & Bahrs, Enno, 2018. "Quantile Regression Of German Standard Farmland Values: Do The Impacts Of Determinants Vary Across The Conditional Distribution?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(4), pages 453-477, November.
    15. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    16. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    17. Jaromir Antoch & Lubos Prchal & Maria Rosaria De Rosa & Pascal Sarda, 2010. "Electricity consumption prediction with functional linear regression using spline estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2027-2041.
    18. Matsui, Hidetoshi, 2020. "Quadratic regression for functional response models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 125-136.
    19. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    20. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    21. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    22. Mohamed Chaouch & Amina Angelika Bouchentouf & Aboubacar Traore & Abbes Rabhi, 2020. "Single functional index quantile regression under general dependence structure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 725-755, July.
    23. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    2. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    3. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    4. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    5. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    6. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    7. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    8. Zhou, Zhiyang, 2019. "Functional continuum regression," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 328-346.
    9. Silvia Novo & Germán Aneiros & Philippe Vieu, 2021. "Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 481-504, June.
    10. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
    11. Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
    12. Hernandez Roig, Harold Antonio & Aguilera Morillo, María del Carmen & Aguilera, Ana M. & Preda, Cristian, 2023. "Penalized function-on-function partial leastsquares regression," DES - Working Papers. Statistics and Econometrics. WS 37758, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    14. Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    15. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    16. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    17. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    18. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    19. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    20. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:1:d:10.1007_s13253-021-00477-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.