IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i1p57-76.html
   My bibliography  Save this article

Functional principal component analyses of biomedical images as outcome measures

Author

Listed:
  • Emma O'Connor
  • Nick Fieller
  • Andrew Holmes
  • John C. Waterton
  • Edward Ainscow

Abstract

Summary. Medical imaging data are often valuable in evaluating disease and therapeutic effects. However, in formal assessment of treatment efficacy, it is usual to discard most of the rich information within the image, instead relying on simple summary measures. This reflects the absence of satisfactory statistical tools for the description and analysis of variability between images. We present extended techniques of functional data analysis applied to distributions of variable values extracted from specified regions within images, which are used to produce displays of ‘principal densities’ that allow interpretation of principal modes of variation in terms of features in the distributions of the voxel values. These techniques are especially relevant in circumstances where the spatial distribution of variables within the specified region is not of interest. Tumours, for example, are disorganized in nature and may change shape rapidly so it is not possible, even in principle, to create a 1–1 correspondence between images before and post treatment. The techniques that are introduced here, however, enable us to distinguish differences between pretreatment and post‐treatment densities. These methods are essentially exploratory; hence we develop a permutation test providing more formal assessment of differences of treatment, which assesses the changes within dose group. Extensions to multivariate images of two or more variables are also illustrated and we show that the methodology makes bivariate functional data just as easy to handle as univariate data.

Suggested Citation

  • Emma O'Connor & Nick Fieller & Andrew Holmes & John C. Waterton & Edward Ainscow, 2010. "Functional principal component analyses of biomedical images as outcome measures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 57-76, January.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:57-76
    DOI: 10.1111/j.1467-9876.2009.00676.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00676.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00676.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fang Yao & Thomas C. M. Lee, 2006. "Penalized spline models for functional principal component analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 3-25, February.
    2. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:44:i05 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    2. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    3. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    4. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    5. Peter Hall & You‐Jun Yang, 2010. "Ordering and selecting components in multivariate or functional data linear prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 93-110, January.
    6. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    8. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    9. Sztemberg-Lewandowska Mirosława, 2019. "Functional Principal Components Analysis on the Exemple of the Achievements of Students in the Years 2009-2017," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(4), pages 16-29, December.
    10. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    11. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    12. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    13. Ruanmin Cao & Lajos Horváth & Zhenya Liu & Yuqian Zhao, 2020. "A study of data-driven momentum and disposition effects in the Chinese stock market by functional data analysis," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 335-358, January.
    14. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    15. Naisyin Wang, 2010. "Comments on: dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 56-59, May.
    16. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    18. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    19. Arnab Bhattacharjee & Eduardo Castro & Taps Maiti & João Marques, 2014. "Endogenous spatial structure and delineation of submarkets: A new framework with application to housing markets," SEEC Discussion Papers 1403, Spatial Economics and Econometrics Centre, Heriot Watt University.
    20. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:57-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.