IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2085-d449148.html
   My bibliography  Save this article

New Modeling Approaches Based on Varimax Rotation of Functional Principal Components

Author

Listed:
  • Christian Acal

    (Department of Statistics and O.R. and IEMath-GR, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Ana M. Aguilera

    (Department of Statistics and O.R. and IEMath-GR, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Manuel Escabias

    (Department of Statistics and O.R. and IEMath-GR, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

Abstract

Functional Principal Component Analysis (FPCA) is an important dimension reduction technique to interpret the main modes of functional data variation in terms of a small set of uncorrelated variables. The principal components can not always be simply interpreted and rotation is one of the main solutions to improve the interpretation. In this paper, two new functional Varimax rotation approaches are introduced. They are based on the equivalence between FPCA of basis expansion of the sample curves and Principal Component Analysis (PCA) of a transformation of the matrix of basis coefficients. The first approach consists of a rotation of the eigenvectors that preserves the orthogonality between the eigenfunctions but the rotated principal component scores are not uncorrelated. The second approach is based on rotation of the loadings of the standardized principal component scores that provides uncorrelated rotated scores but non-orthogonal eigenfunctions. A simulation study and an application with data from the curves of infections by COVID-19 pandemic in Spain are developed to study the performance of these methods by comparing the results with other existing approaches.

Suggested Citation

  • Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2085-:d:449148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Ocaña, F. A. & Aguilera, A. M. & Valderrama, M. J., 1999. "Functional Principal Components Analysis by Choice of Norm," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 262-276, November.
    3. Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    6. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    7. Aguilera-Morillo, M. Carmen & Aguilera, Ana M. & Jiménez-Molinos, Francisco & Roldán, Juan B., 2019. "Stochastic modeling of Random Access Memories reset transitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 197-209.
    8. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    9. Ana M. Aguilera & Ramón Gutiérrez & Francisco A. Ocaña & Mariano J. Valderrama, 1995. "Computational approaches to estimation in the principal component analysis of a stochastic process," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 11(4), pages 279-299, December.
    10. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    11. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    12. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory S. Ching & Pei-Ching Chao & Yi-Shan Kuo & Amy Roberts, 2021. "Effects of Cognitive Knowledge and Intercultural Behavioral Skills on Cultural Stereotypes and Intercultural Affect: A Case of Elementary Students’ Perspective on Islam," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    2. Zaneta Chatys-Bogacka & Iwona Mazurkiewicz & Joanna Slowik & Monika Bociaga-Jasik & Anna Dzieza-Grudnik & Agnieszka Slowik & Marcin Wnuk & Leszek Drabik, 2022. "Brain Fog and Quality of Life at Work in Non-Hospitalized Patients after COVID-19," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    3. Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
    4. Yueh-Luen Hu & Amy Roberts & Gregory S. Ching & Pei-Ching Chao, 2022. "Moderating Effects of Intercultural Social Efficacy and the Role of Language in the Context of Coping Strategies in Study Abroad Depression," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    5. Mahrouz Nourali, 2023. "Improved Treatment of Model Prediction Uncertainty: Estimating Rainfall using Discrete Wavelet Transform and Principal Component Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4211-4231, September.
    6. Christian Acal & Ana M. Aguilera, 2023. "Basis expansion approaches for functional analysis of variance with repeated measures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 291-321, June.
    7. Michał Suchanek & Agnieszka Szmelter-Jarosz, 2023. "Car enthusiasm during the second and fourth waves of COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    2. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    3. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    4. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    5. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    6. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    7. repec:eca:wpaper:2013/131191 is not listed on IDEAS
    8. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    9. Kokoszka, Piotr & Reimherr, Matthew, 2013. "Asymptotic normality of the principal components of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1546-1562.
    10. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    11. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
    12. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    13. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    15. Paula R. Bouzas & Ana M. Aguilera & Nuria Ruiz-Fuentes, 2012. "Functional Estimation of the Random Rate of a Cox Process," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 57-69, March.
    16. Marc Vidal & Mattia Rosso & Ana M. Aguilera, 2021. "Bi-Smoothed Functional Independent Component Analysis for EEG Artifact Removal," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    17. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    18. Ricardo A. Maronna, 2021. "Robust functional principal components for irregularly spaced longitudinal data," Statistical Papers, Springer, vol. 62(4), pages 1563-1582, August.
    19. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    20. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    21. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2085-:d:449148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.