Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
- Li, Yingxing & Härdle, Wolfgang Karl & Huang, Chen, 2017. "Smooth principal component analysis for high dimensional data," SFB 649 Discussion Papers 2017-024, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Kishor, N. Kundan & Morley, James, 2015. "What factors drive the price–rent ratio for the housing market? A modified present-value analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 235-249.
- Yongtao Guan & Michael Sherman & James A. Calvin, 2004. "A Nonparametric Test for Spatial Isotropy Using Subsampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 810-821, January.
- Luo Xiao & Yingxing Li & David Ruppert, 2013. "Fast bivariate P-splines: the sandwich smoother," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 577-599, June.
- Campbell, Sean D. & Davis, Morris A. & Gallin, Joshua & Martin, Robert F., 2009. "What moves housing markets: A variance decomposition of the rent-price ratio," Journal of Urban Economics, Elsevier, vol. 66(2), pages 90-102, September.
- Zhou, Lan & Huang, Jianhua Z. & Martinez, Josue G. & Maity, Arnab & Baladandayuthapani, Veerabhadran & Carroll, Raymond J., 2010. "Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 390-400.
- Yuhang Xu & Yehua Li & Dan Nettleton, 2018. "Nested Hierarchical Functional Data Modeling and Inference for the Analysis of Functional Plant Phenotypes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 593-606, April.
- Hao Zhang & Dale L. Zimmerman, 2005. "Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, Biometrika Trust, vol. 92(4), pages 921-936, December.
- Alan Gelfand & Alexandra Schmidt & Sudipto Banerjee & C. Sirmans, 2004. "Nonstationary multivariate process modeling through spatially varying coregionalization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 263-312, December.
- Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
- Nerini, David & Monestiez, Pascal & Manté, Claude, 2010. "Cokriging for spatial functional data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 409-418, February.
- Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- repec:wyi:journl:002174 is not listed on IDEAS
- Honglang Wang & Ping‐Shou Zhong & Yuehua Cui & Yehua Li, 2018. "Unified empirical likelihood ratio tests for functional concurrent linear models and the phase transition from sparse to dense functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 343-364, March.
- Raymond K. W. Wong & Yehua Li & Zhengyuan Zhu, 2019. "Partially Linear Functional Additive Models for Multivariate Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 406-418, January.
- Lin Zhang & Veerabhadran Baladandayuthapani & Hongxiao Zhu & Keith A. Baggerly & Tadeusz Majewski & Bogdan A. Czerniak & Jeffrey S. Morris, 2016. "Functional CAR Models for Large Spatially Correlated Functional Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 772-786, April.
- Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
- Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
- Yu-Ru Su & Chong-Zhi Di & Li Hsu, 2017. "Hypothesis testing in functional linear models," Biometrics, The International Biometric Society, vol. 73(2), pages 551-561, June.
- Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
- Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
- Giraldo, Ramón & Dabo-Niang, Sophie & Martínez, Sergio, 2018. "Statistical modeling of spatial big data: An approach from a functional data analysis perspective," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 126-129.
- Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
- Wong, Raymond K.W. & Zhang, Xiaoke, 2019. "Nonparametric operator-regularized covariance function estimation for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 131-144.
- Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
- Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
- Kehui Chen & Pedro Delicado & Hans-Georg Müller, 2017. "Modelling function-valued stochastic processes, with applications to fertility dynamics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 177-196, January.
- Wu Wang & Ying Sun & Huixia Judy Wang, 2023. "Latent group detection in functional partially linear regression models," Biometrics, The International Biometric Society, vol. 79(1), pages 280-291, March.
- Haochang Shou & Vadim Zipunnikov & Ciprian M. Crainiceanu & Sonja Greven, 2015. "Structured functional principal component analysis," Biometrics, The International Biometric Society, vol. 71(1), pages 247-257, March.
- Weicheng Zhu & Sheng Xu & Catherine C. Liu & Yehua Li, 2023. "Minimax powerful functional analysis of covariance tests with application to longitudinal genome‐wide association studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 266-295, March.
- Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
- Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
- Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013.
"Description length and dimensionality reduction in functional data analysis,"
Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
- D. S. Poskitt & Arivalzahan Sengarapillai, 2009. "Description Length and Dimensionality Reduction in Functional Data Analysis," Monash Econometrics and Business Statistics Working Papers 13/09, Monash University, Department of Econometrics and Business Statistics.
- Kim, Jan R. & Lim, Gieyoung, 2016. "Fundamentals and rational bubbles in the Korean housing market: A modified present-value approach," Economic Modelling, Elsevier, vol. 59(C), pages 174-181.
- Mingfei Dong & Donatello Telesca & Catherine Sugar & Frederick Shic & Adam Naples & Scott P. Johnson & Beibin Li & Adham Atyabi & Minhang Xie & Sara J. Webb & Shafali Jeste & Susan Faja & April R. Lev, 2023. "A Functional Model for Studying Common Trends Across Trial Time in Eye Tracking Experiments," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 261-287, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-07-20 (Econometrics)
- NEP-GEO-2020-07-20 (Economic Geography)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.13489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.