IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v167y2022ics0167947321001973.html
   My bibliography  Save this article

Oracle-efficient estimation for functional data error distribution with simultaneous confidence band

Author

Listed:
  • Wang, Jiangyan
  • Gu, Lijie
  • Yang, Lijian

Abstract

Kolmogorov-Smirnov (K-S) simultaneous confidence band (SCB) is constructed for the error distribution of dense functional data based on kernel distribution estimator (KDE). The KDE is computed from residuals of B spline trajectories over a smaller number of measurements, whereas the B spline trajectories are computed from the remaining larger set of measurements. Under mild and simple assumptions, it is shown that the KDE is a uniformly oracle-efficient estimator of the error distribution, and the SCB has the same asymptotic properties as the classic K-S SCB based on the infeasible empirical cumulative distribution function (EDF) of unobserved errors. Simulation examples corroborate with the theoretical findings. The proposed method is illustrated by examples of an EEG (Electroencephalogram) data and a stock data.

Suggested Citation

  • Wang, Jiangyan & Gu, Lijie & Yang, Lijian, 2022. "Oracle-efficient estimation for functional data error distribution with simultaneous confidence band," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001973
    DOI: 10.1016/j.csda.2021.107363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321001973
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalie Neumeyer & Ingrid Van Keilegom, 2009. "Change‐Point Tests for the Error Distribution in Non‐parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 518-541, September.
    2. Shujie Ma, 2014. "A plug-in the number of knots selector for polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 489-507, September.
    3. Holger Dette & Natalie Neumeyer & Ingrid Van Keilegom, 2007. "A new test for the parametric form of the variance function in non‐parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 903-917, November.
    4. Jing Wang, 2012. "Modelling time trend via spline confidence band," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 275-301, April.
    5. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    6. Krivobokova, Tatyana & Kneib, Thomas & Claeskens, Gerda, 2010. "Simultaneous Confidence Bands for Penalized Spline Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 852-863.
    7. Q. Song & R. Liu & Q. Shao & L. Yang, 2014. "A Simultaneous Confidence Band for Dense Longitudinal Regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(24), pages 5195-5210, December.
    8. Hervé Cardot & Etienne Josserand, 2011. "Horvitz--Thompson estimators for functional data: asymptotic confidence bands and optimal allocation for stratified sampling," Biometrika, Biometrika Trust, vol. 98(1), pages 107-118.
    9. Shuzhuan Zheng & Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2016. "Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 607-626, December.
    10. Gonzales-Manteiga, Wenceslao & Martinez-Miranda, Maria Dolores & Van Keilegom, Ingrid, 2016. "Goodness-of-fit test in parametric mixed effects models based on estimation of the error distribution," LIDAM Reprints ISBA 2016010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Li Cai & Lijian Yang, 2015. "A smooth simultaneous confidence band for conditional variance function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 632-655, September.
    12. Lijie Gu & Li Wang & Wolfgang Härdle & Lijian Yang, 2014. "A simultaneous confidence corridor for varying coefficient regression with sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 806-843, December.
    13. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    14. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    15. Yuanyuan Zhang & Lijian Yang, 2018. "A smooth simultaneous confidence band for correlation curve," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 247-269, June.
    16. Lijie Gu & Suojin Wang & Lijian Yang, 2019. "Simultaneous confidence bands for the distribution function of a finite population in stratified sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 983-1005, August.
    17. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    18. Sebastian Kiwitt & Natalie Neumeyer, 2012. "Estimating the Conditional Error Distribution in Non-parametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 259-281, June.
    19. Jiangyan Wang & Fuxia Cheng & Lijian Yang, 2013. "Smooth simultaneous confidence bands for cumulative distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 395-407, June.
    20. Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
    21. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    22. Guanqun Cao & Lijian Yang & David Todem, 2012. "Simultaneous inference for the mean function based on dense functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(2), pages 359-377.
    23. Wenceslao González-Manteiga & María Dolores Martínez-Miranda & Ingrid Van Keilegom, 2016. "Goodness-of-fit test in parametric mixed effects models based on estimation of the error distribution," Biometrika, Biometrika Trust, vol. 103(1), pages 133-146.
    24. Shuzhuan Zheng & Lijian Yang & Wolfgang K. Härdle, 2014. "A Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 661-673, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Lijie & Wang, Suojin & Yang, Lijian, 2021. "Smooth simultaneous confidence band for the error distribution function in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    2. Jie Li & Jiangyan Wang & Lijian Yang, 2022. "Kolmogorov–Smirnov simultaneous confidence bands for time series distribution function," Computational Statistics, Springer, vol. 37(3), pages 1015-1039, July.
    3. Chen Zhong & Lijian Yang, 2021. "Simultaneous confidence bands for comparing variance functions of two samples based on deterministic designs," Computational Statistics, Springer, vol. 36(2), pages 1197-1218, June.
    4. Jiangyan Wang & Suojin Wang & Lijian Yang, 2016. "Simultaneous confidence bands for the distribution function of a finite population and of its superpopulation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 692-709, December.
    5. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
    6. Yuanyuan Zhang & Lijian Yang, 2018. "A smooth simultaneous confidence band for correlation curve," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 247-269, June.
    7. Lijie Gu & Suojin Wang & Lijian Yang, 2019. "Simultaneous confidence bands for the distribution function of a finite population in stratified sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 983-1005, August.
    8. Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
    9. Zhong, Chen, 2024. "Oracle-efficient estimation and trend inference in non-stationary time series with trend and heteroscedastic ARMA error," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    10. Kun Huang & Sijie Zheng & Lijian Yang, 2022. "Inference for dependent error functional data with application to event-related potentials," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1100-1120, December.
    11. Yueying Wang & Guannan Wang & Li Wang & R. Todd Ogden, 2020. "Simultaneous confidence corridors for mean functions in functional data analysis of imaging data," Biometrics, The International Biometric Society, vol. 76(2), pages 427-437, June.
    12. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    13. Shuzhuan Zheng & Rong Liu & Lijian Yang & Wolfgang K. Härdle, 2016. "Statistical inference for generalized additive models: simultaneous confidence corridors and variable selection," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 607-626, December.
    14. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    16. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    17. Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    18. Holger Dette & Juan Carlos Pardo‐Fernández & Ingrid Van Keilegom, 2009. "Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 782-799, December.
    19. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    20. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.