Author
Listed:
- Peter Hall
- Mohammad Hosseini‐Nasab
Abstract
Summary. Functional data analysis is intrinsically infinite dimensional; functional principal component analysis reduces dimension to a finite level, and points to the most significant components of the data. However, although this technique is often discussed, its properties are not as well understood as they might be. We show how the properties of functional principal component analysis can be elucidated through stochastic expansions and related results. Our approach quantifies the errors that arise through statistical approximation, in successive terms of orders n−1/2, n−1, n−3/2, …, where n denotes sample size. The expansions show how spacings among eigenvalues impact on statistical performance. The term of size n−1/2 illustrates first‐order properties and leads directly to limit theory which describes the dominant effect of spacings. Thus, for example, spacings are seen to have an immediate, first‐order effect on properties of eigenfunction estimators, but only a second‐order effect on eigenvalue estimators. Our results can be used to explore properties of existing methods, and also to suggest new techniques. In particular, we suggest bootstrap methods for constructing simultaneous confidence regions for an infinite number of eigenvalues, and also for individual eigenvalues and eigenvectors.
Suggested Citation
Peter Hall & Mohammad Hosseini‐Nasab, 2006.
"On properties of functional principal components analysis,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
Handle:
RePEc:bla:jorssb:v:68:y:2006:i:1:p:109-126
DOI: 10.1111/j.1467-9868.2005.00535.x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:1:p:109-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.