IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v143y2016icp208-232.html
   My bibliography  Save this article

Non-asymptotic adaptive prediction in functional linear models

Author

Listed:
  • Brunel, Élodie
  • Mas, André
  • Roche, Angelina

Abstract

Functional linear regression has recently attracted considerable interest. Many works focus on asymptotic inference. In this paper we consider in a non asymptotic framework a simple estimation procedure based on functional Principal Regression. It revolves in the minimization of a least square contrast coupled with a classical projection on the space spanned by the m first empirical eigenvectors of the covariance operator of the functional sample. The novelty of our approach is to select automatically the crucial dimension m by minimization of a penalized least square contrast. Our method is based on model selection tools. Yet, since this kind of methods consists usually in projecting onto known non-random spaces, we need to adapt it to empirical eigenbasis made of data-dependent–hence random–vectors. The resulting estimator is fully adaptive and is shown to verify an oracle inequality for the risk associated to the prediction error and to attain optimal minimax rates of convergence over a certain class of ellipsoids. Our strategy of model selection is finally compared numerically with cross-validation.

Suggested Citation

  • Brunel, Élodie & Mas, André & Roche, Angelina, 2016. "Non-asymptotic adaptive prediction in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 208-232.
  • Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:208-232
    DOI: 10.1016/j.jmva.2015.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 395-408, February.
    2. Comte, Fabienne & Johannes, Jan, 2012. "Adaptive functional linear regression," LIDAM Reprints ISBA 2012031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    4. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    5. Cardot, Herve & Johannes, Jan, 2010. "Thresholding projection estimators in functional linear models," LIDAM Reprints ISBA 2010034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Li, Yehua & Hsing, Tailen, 2007. "On rates of convergence in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1782-1804, October.
    7. Johannes, Jan & Schenk, Rudolf, 2013. "On rate optimal local estimation in functional linear regression," LIDAM Reprints ISBA 2013014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    9. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    10. Comte, Fabienne & Johannes, Jan, 2010. "Adaptive estimation in circular functional linear models," LIDAM Reprints ISBA 2010035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    12. Hankin, Robin K. S., 2015. "Circular Statistics in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(b05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelina Roche, 2018. "Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety," Computational Statistics, Springer, vol. 33(1), pages 467-485, March.
    2. Ghodrati, Laya & Panaretos, Victor M., 2023. "Minimax rate for optimal transport regression between distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
    3. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
    4. Fermanian, Adeline, 2022. "Functional linear regression with truncated signatures," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    2. Mareike Bereswill & Jan Johannes, 2013. "On the effect of noisy measurements of the regressor in functional linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 488-513, September.
    3. Comte , Fabienne & Johannes, Jan, 2011. "Adaptive functional linear regression," LIDAM Discussion Papers ISBA 2011038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    5. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    6. Peter Hall & Giles Hooker, 2016. "Truncated linear models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 637-653, June.
    7. Andrii Babii & Marine Carrasco & Idriss Tsafack, 2024. "Functional Partial Least-Squares: Optimal Rates and Adaptation," Papers 2402.11134, arXiv.org.
    8. Imaizumi, Masaaki & Kato, Kengo, 2018. "PCA-based estimation for functional linear regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 15-36.
    9. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    10. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    11. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    12. Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
    13. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    14. Angelina Roche, 2018. "Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety," Computational Statistics, Springer, vol. 33(1), pages 467-485, March.
    15. Lee, Eun Ryung & Park, Byeong U., 2012. "Sparse estimation in functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 1-17.
    16. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    17. Siegfried Hörmann & Łukasz Kidziński, 2015. "A Note on Estimation in Hilbertian Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 43-62, March.
    18. Shin, Hyejin & Hsing, Tailen, 2012. "Linear prediction in functional data analysis," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3680-3700.
    19. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
    20. Bereswill, Mareike & Johannes, Jan, 2011. "On the effect of noisy observations of the regressor in a functional linear model," LIDAM Discussion Papers ISBA 2011039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:208-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.