IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v19y2010i1p56-59.html
   My bibliography  Save this article

Comments on: dynamic relations for sparsely sampled Gaussian processes

Author

Listed:
  • Naisyin Wang

Abstract

No abstract is available for this item.

Suggested Citation

  • Naisyin Wang, 2010. "Comments on: dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 56-59, May.
  • Handle: RePEc:spr:testjl:v:19:y:2010:i:1:p:56-59
    DOI: 10.1007/s11749-009-0175-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-009-0175-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-009-0175-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sztemberg-Lewandowska Mirosława, 2019. "Functional Principal Components Analysis on the Exemple of the Achievements of Students in the Years 2009-2017," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(4), pages 16-29, December.
    2. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    3. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    4. Ruanmin Cao & Lajos Horváth & Zhenya Liu & Yuqian Zhao, 2020. "A study of data-driven momentum and disposition effects in the Chinese stock market by functional data analysis," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 335-358, January.
    5. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    6. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    7. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    8. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    9. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    10. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    11. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    12. Federico A. Bugni & Joel L. Horowitz, 2021. "Permutation tests for equality of distributions of functional data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 861-877, November.
    13. repec:hum:wpaper:sfb649dp2016-033 is not listed on IDEAS
    14. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    15. Saart, Patrick W. & Xia, Yingcun, 2022. "Functional time series approach to analyzing asset returns co-movements," Journal of Econometrics, Elsevier, vol. 229(1), pages 127-151.
    16. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    17. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
    18. Shanshan Li & Ani Eloyan & Suresh Joel & Stewart Mostofsky & James Pekar & Susan Spear Bassett & Brian Caffo, 2012. "Analysis of Group ICA-Based Connectivity Measures from fMRI: Application to Alzheimer's Disease," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    19. Aaron Fisher & Brian Caffo & Brian Schwartz & Vadim Zipunnikov, 2016. "Fast, Exact Bootstrap Principal Component Analysis for > 1 Million," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 846-860, April.
    20. Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
    21. Huang, Lele & Wang, Huiwen & Zheng, Andi, 2014. "The M-estimator for functional linear regression model," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 165-173.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:19:y:2010:i:1:p:56-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.