Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104888
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bo Wang & Jian Qing Shi, 2014. "Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1123-1133, September.
- Gorgens, Tue & Horowitz, Joel L., 1999.
"Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable,"
Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
- Horowitz, J. & Gorgens, T., 1995. "Semiparametric Estimation of a Censored Regression Model with an Unknown Transformation of the Dependent Variable," Working Papers 95-15, University of Iowa, Department of Economics.
- Tue Gorgens & Joel L. Horowitz, 1996. "Semiparametric Estimation of a Censored Regression Model with an Unknown Transformation of the Dependent Variable," Econometrics 9603001, University Library of Munich, Germany.
- Heng Lian & Hua Liang & Raymond J. Carroll, 2015. "Variance function partially linear single-index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 171-194, January.
- Kani Chen & Xingwei Tong, 2010. "Varying coefficient transformation models with censored data," Biometrika, Biometrika Trust, vol. 97(4), pages 969-976.
- S. R. Lipsitz & J. Ibrahim & G. Molenberghs, 2000. "Using a Box–Cox transformation in the analysis of longitudinal data with incomplete responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 287-296.
- Chih-Li Sung & Ying Hung & William Rittase & Cheng Zhu & C. F. Jeff Wu, 2020. "A Generalized Gaussian Process Model for Computer Experiments With Binary Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 945-956, April.
- Lu, Minggen & Zhang, Ying & Huang, Jian, 2009. "Semiparametric Estimation Methods for Panel Count Data Using Monotone B-Splines," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1060-1070.
- Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006.
"Efficient Estimation of Semiparametric Multivariate Copula Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
- Xiaohong Chen & Yanqin Fan & Victor Tsyrennifov, 2004. "Efficient Estimation of Semiparametric Multivariate Copula Models," Vanderbilt University Department of Economics Working Papers 0420, Vanderbilt University Department of Economics.
- Ping Yu & Zhongzhan Zhang & Jiang Du, 2016. "A test of linearity in partial functional linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 953-969, November.
- Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
- Bo Cai & David B. Dunson & Joseph B. Stanford, 2010. "Dynamic Model for Multivariate Markers of Fecundability," Biometrics, The International Biometric Society, vol. 66(3), pages 905-913, September.
- Xiao‐Hua Zhou & Huazhen Lin & Eric Johnson, 2008. "Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1029-1047, November.
- Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
- Peter Hall & Mohammad Hosseini‐Nasab, 2006. "On properties of functional principal components analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 109-126, February.
- Dehan Kong & Kaijie Xue & Fang Yao & Hao H. Zhang, 2016. "Partially functional linear regression in high dimensions," Biometrika, Biometrika Trust, vol. 103(1), pages 147-159.
- Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
- Zhu, Hongxiao & Morris, Jeffrey S. & Wei, Fengrong & Cox, Dennis D., 2017. "Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 88-101.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
- Amy H. Herring & Juan Yang, 2007. "Bayesian Modeling of Multiple Episode Occurrence and Severity with a Terminating Event," Biometrics, The International Biometric Society, vol. 63(2), pages 381-388, June.
- Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
- Matthew J. Gurka & Lloyd J. Edwards & Keith E. Muller & Lawrence L. Kupper, 2006. "Extending the Box–Cox transformation to the linear mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 273-288, March.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
- Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
- Shuzhuan Zheng & Lijian Yang & Wolfgang K. Härdle, 2014. "A Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 661-673, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
- Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
- Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Wu Wang & Ying Sun & Huixia Judy Wang, 2023. "Latent group detection in functional partially linear regression models," Biometrics, The International Biometric Society, vol. 79(1), pages 280-291, March.
- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
- Yao Luo & Isabelle Perrigne & Quang Vuong, 2018.
"Structural Analysis of Nonlinear Pricing,"
Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
- Yao Luo & Isabelle Perrigne & Quang Vuong, 2014. "Structural Analysis of Nonlinear Pricing," Working Papers tecipa-518, University of Toronto, Department of Economics.
- Luo, Yao & Perrigne, Isabelle & Vuong, Quang, 2014. "Structural Analysis of Nonlinear Pricing," Working Papers 14-003, Rice University, Department of Economics.
- Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
- Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
- Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
- Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
- Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
- Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
- Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2014. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Discussion Papers ISBA 2014047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
More about this item
Keywords
Functional regression analysis; Latent process; Normal transformation model; Semi-parametric;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001664. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.