IDEAS home Printed from https://ideas.repec.org/p/keo/dpaper/2024-022.html
   My bibliography  Save this paper

Causal Inference With Auxiliary Observations

Author

Listed:
  • Yuta Ota

    (Keio University, Department of Economics)

  • Takahiro Hoshino

    (Keio University, Department of Economics)

  • Taisuke Otsu

    (London School of Economics, Department of Economics)

Abstract

Random assignment of treatment and concurrent data collection on treatment and control groups is often impossible in the evaluation of social programs. A standard method for assessing treatment effects in such infeasible situations is to estimate the local average treatment effect under exclusion restriction and monotonicity assumptions. Recently, several studies have proposed methods to estimate the average treatment effect by additionally assuming treatment effects homogeneity across principal strata or conditional independence of assignment and principal strata. However, these assumptions are often difficult to satisfy. We propose a new strategy for nonparametric identification of causal effects that relaxes these assumptions by using auxiliary observations that are readily available in a wide range of settings. Our strategy identifies the average treatment effect for compliers and average treatment effect on treated under only exclusion restrictions and the assumptions on auxiliary observations. The average treatment effect is then identified under relaxed treatment effects homogeneity. We propose sample analog estimators when the assignment is random and multiply robust estimators when the assignment is non-random. We then present details of the GMM estimation and testing methods which utilize overidentified restrictions. The proposed methods are illustrated by empirical examples which revisit the studies by Thornton (2008), Gerber et al. (2009), and Beam (2016), as well as an experimental data related to marketing in a private sector.

Suggested Citation

  • Yuta Ota & Takahiro Hoshino & Taisuke Otsu, 2024. "Causal Inference With Auxiliary Observations," Keio-IES Discussion Paper Series 2024-022, Institute for Economics Studies, Keio University.
  • Handle: RePEc:keo:dpaper:2024-022
    as

    Download full text from publisher

    File URL: https://ies.keio.ac.jp/upload/DP2024-022_EN.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    2. Angus Deaton, 2009. "Instruments of development: Randomization in the tropics, and the search for the elusive keys to economic development," Working Papers 1128, Princeton University, Woodrow Wilson School of Public and International Affairs, Center for Health and Wellbeing..
    3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    4. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    5. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    6. Marbach, Moritz & Hangartner, Dominik, 2020. "Profiling Compliers and Noncompliers for Instrumental-Variable Analysis," Political Analysis, Cambridge University Press, vol. 28(3), pages 435-444, July.
    7. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    8. Alan S. Gerber & Dean Karlan & Daniel Bergan, 2009. "Does the Media Matter? A Field Experiment Measuring the Effect of Newspapers on Voting Behavior and Political Opinions," American Economic Journal: Applied Economics, American Economic Association, vol. 1(2), pages 35-52, April.
    9. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    10. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
    11. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    12. Nadja van ’t Hoff & Arthur Lewbel & Giovanni Mellace, 2023. "Limited Monotonicity and the Combined Compliers LATE," Boston College Working Papers in Economics 1059, Boston College Department of Economics, revised 25 Apr 2024.
    13. Christian M Dahl & Martin Huber & Giovanni Mellace, 2023. "It is never too LATE: a new look at local average treatment effects with or without defiers," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 378-404.
    14. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    15. Aronow, Peter M. & Carnegie, Allison, 2013. "Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable," Political Analysis, Cambridge University Press, vol. 21(4), pages 492-506.
    16. Kosuke Imai & Dustin Tingley & Teppei Yamamoto, 2013. "Experimental designs for identifying causal mechanisms," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(1), pages 5-51, January.
    17. Rebecca L. Thornton, 2008. "The Demand for, and Impact of, Learning HIV Status," American Economic Review, American Economic Association, vol. 98(5), pages 1829-1863, December.
    18. repec:pri:rpdevs:instruments_of_development.pdf is not listed on IDEAS
    19. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    20. Christian N. Brinch & Magne Mogstad & Matthew Wiswall, 2017. "Beyond LATE with a Discrete Instrument," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 985-1039.
    21. Beam, Emily A., 2016. "Do job fairs matter? Experimental evidence on the impact of job-fair attendance," Journal of Development Economics, Elsevier, vol. 120(C), pages 32-40.
    22. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    23. Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
    24. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    25. Joshua Angrist & Ivan Fernandez-Val, 2010. "ExtrapoLATE-ing: External Validity and Overidentification in the LATE Framework," NBER Working Papers 16566, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    2. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    4. Tarek Azzam & Michael Bates & David Fairris, 2019. "Do Learning Communities Increase First Year College Retention? Testing Sample Selection and External Validity of Randomized Control Trials," Working Papers 202002, University of California at Riverside, Department of Economics.
    5. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    6. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    7. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    8. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    9. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    10. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    11. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    12. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    13. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    14. Zhenting Sun & Kaspar Wuthrich, 2022. "Pairwise Valid Instruments," Papers 2203.08050, arXiv.org, revised Jan 2024.
    15. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    16. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    17. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    18. Nadja van ’t Hoff & Arthur Lewbel & Giovanni Mellace, 2023. "Limited Monotonicity and the Combined Compliers LATE," Boston College Working Papers in Economics 1059, Boston College Department of Economics, revised 25 Apr 2024.
    19. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    20. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.

    More about this item

    Keywords

    generalized method of moments; instrumental variables; noncompliance; nonparametric identification; treatment effect;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:keo:dpaper:2024-022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Institute for Economics Studies, Keio University (email available below). General contact details of provider: https://edirc.repec.org/data/iekeijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.