IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v78y2016i4p829-848.html
   My bibliography  Save this article

Principal causal effect identification and surrogate end point evaluation by multiple trials

Author

Listed:
  • Zhichao Jiang
  • Peng Ding
  • Zhi Geng

Abstract

No abstract is available for this item.

Suggested Citation

  • Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
  • Handle: RePEc:bla:jorssb:v:78:y:2016:i:4:p:829-848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12135
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Frumento & Fabrizia Mealli & Barbara Pacini & Donald B. Rubin, 2012. "Evaluating the Effect of Training on Wages in the Presence of Noncompliance, Nonemployment, and Missing Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 450-466, June.
    2. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    3. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    4. Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
    5. Hua Chen & Zhi Geng & Jinzhu Jia, 2007. "Criteria for surrogate end points," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 919-932, November.
    6. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    7. Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
    8. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    9. Gustafson, Paul, 2009. "What Are the Limits of Posterior Distributions Arising From Nonidentified Models, and Why Should We Care?," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1682-1695.
    10. Stuart G. Baker & Daniel J. Sargent & Marc Buyse & Tomasz Burzykowski, 2012. "Predicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time," Biometrics, The International Biometric Society, vol. 68(1), pages 248-257, March.
    11. Alessandra Mattei & Fabrizia Mealli & Barbara Pacini, 2014. "Identification of causal effects in the presence of nonignorable missing outcome values," Biometrics, The International Biometric Society, vol. 70(2), pages 278-288, June.
    12. Zhang, Junni L. & Rubin, Donald B. & Mealli, Fabrizia, 2009. "Likelihood-Based Analysis of Causal Effects of Job-Training Programs Using Principal Stratification," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 166-176.
    13. Mealli, Fabrizia & Pacini, Barbara, 2008. "Comparing principal stratification and selection models in parametric causal inference with nonignorable missingness," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 507-516, December.
    14. Chuan Ju & Zhi Geng, 2010. "Criteria for surrogate end points based on causal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 129-142, January.
    15. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    16. Marshall M. Joffe & Tom Greene, 2009. "Related Causal Frameworks for Surrogate Outcomes," Biometrics, The International Biometric Society, vol. 65(2), pages 530-538, June.
    17. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    18. Steffen L. Lauritzen, 2004. "Discussion on Causality," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(2), pages 189-193, June.
    19. Jing Cheng & Dylan S. Small, 2006. "Bounds on causal effects in three‐arm trials with non‐compliance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 815-836, November.
    20. Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    2. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    3. Yuta Ota & Takahiro Hoshino & Taisuke Otsu, 2024. "Causal Inference With Auxiliary Observations," Keio-IES Discussion Paper Series 2024-022, Institute for Economics Studies, Keio University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    2. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    3. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    4. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    5. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    6. Gilbert Peter B. & Gabriel Erin E. & Huang Ying & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    7. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    8. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    9. Fatema Shafie Khorassani & Jeremy M. G. Taylor & Niko Kaciroti & Michael R. Elliott, 2023. "Incorporating Covariates into Measures of Surrogate Paradox Risk," Stats, MDPI, vol. 6(1), pages 1-23, February.
    10. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    11. Fan Yang & Peng Ding, 2018. "Using survival information in truncation by death problems without the monotonicity assumption," Biometrics, The International Biometric Society, vol. 74(4), pages 1232-1239, December.
    12. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.
    13. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    14. Ying Huang, 2018. "Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling," Biometrics, The International Biometric Society, vol. 74(1), pages 27-39, March.
    15. Marshall M. Joffe, 2013. "Discussion on “Surrogate Measures and Consistent Surrogates”," Biometrics, The International Biometric Society, vol. 69(3), pages 569-573, September.
    16. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    17. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    18. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
    19. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    20. Emily K. Roberts & Michael R. Elliott & Jeremy M. G. Taylor, 2023. "Solutions for surrogacy validation with longitudinal outcomes for a gene therapy," Biometrics, The International Biometric Society, vol. 79(3), pages 1840-1852, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:4:p:829-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.