IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i503p1120-1131.html
   My bibliography  Save this article

Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance

Author

Listed:
  • Fabrizia Mealli
  • Barbara Pacini

Abstract

We develop new methods for analyzing randomized experiments with noncompliance and, by extension, instrumental variable settings, when the often controversial, but key, exclusion restriction assumption is violated. We show how existing large-sample bounds on intention-to-treat effects for the subpopulations of compliers, never-takers, and always-takers can be tightened by exploiting the joint distribution of the outcome of interest and a secondary outcome, for which the exclusion restriction is satisfied. The derived bounds can be used to detect violations of the exclusion restriction and the magnitude of these violations in instrumental variables settings. It is shown that the reduced width of the bounds depends on the strength of the association of the auxiliary variable with the primary outcome and the compliance status. We also show how the setup we consider offers new identifying assumptions of intention-to-treat effects. The role of the auxiliary information is shown in two examples of a real social job training experiment and a simulated medical randomized encouragement study. We also discuss issues of inference in finite samples and show how to conduct Bayesian analysis in our partial and point identified settings. Supplementary materials for this article are available online.

Suggested Citation

  • Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:503:p:1120-1131
    DOI: 10.1080/01621459.2013.802238
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.802238
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.802238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    2. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    3. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    4. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
    5. Huber, Martin, 2014. "Sensitivity checks for the local average treatment effect," Economics Letters, Elsevier, vol. 123(2), pages 220-223.
    6. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    7. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    8. Vitor Possebom, 2019. "Sharp Bounds for the Marginal Treatment Effect with Sample Selection," Papers 1904.08522, arXiv.org.
    9. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    10. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    11. Rui Wang, 2023. "Point Identification of LATE with Two Imperfect Instruments," Papers 2303.13795, arXiv.org.
    12. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    13. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    14. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    15. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    16. Fan Yang & Peng Ding, 2018. "Using survival information in truncation by death problems without the monotonicity assumption," Biometrics, The International Biometric Society, vol. 74(4), pages 1232-1239, December.
    17. Glynn, Adam & Rueda, miguel & Schuessler, Julian, 2023. "Post-Instrument Bias in Linear Models," SocArXiv axn4t, Center for Open Science.
    18. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    19. Chanmin Kim & Lucas R. F. Henneman & Christine Choirat & Corwin M. Zigler, 2020. "Health effects of power plant emissions through ambient air quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1677-1703, October.
    20. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg Using Principal Stratification," IZA Discussion Papers 11973, Institute of Labor Economics (IZA).
    21. Avi Feller & Fabrizia Mealli & Luke Miratrix, 2017. "Principal Score Methods: Assumptions, Extensions, and Practical Considerations," Journal of Educational and Behavioral Statistics, , vol. 42(6), pages 726-758, December.
    22. Martin Huber, 2015. "Testing the Validity of the Sibling Sex Ratio Instrument," LABOUR, CEIS, vol. 29(1), pages 1-14, March.
    23. Didier Nibbering & Matthijs Oosterveen, 2023. "Instrument-based estimation of full treatment effects with movers," Papers 2306.07018, arXiv.org.
    24. Christophe Bruneel-Zupanc & Jad Beyhum, 2024. "Identification with possibly invalid IVs," Papers 2401.03990, arXiv.org, revised Oct 2024.
    25. Lupparelli, Monia & Mattei, Alessandra, 2020. "Joint and marginal causal effects for binary non-independent outcomes," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:503:p:1120-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.