IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v234y2023i2p479-511.html
   My bibliography  Save this article

Identifying treatment effects in the presence of confounded types

Author

Listed:
  • Kédagni, Désiré

Abstract

In this paper, I consider identification of treatment effects when the treatment is endogenous. The use of instrumental variables is a popular solution to deal with endogeneity, but this may give misleading answers when the instrument is invalid. I show that when an (unobserved) instrument is invalid due to correlation with the first stage unobserved heterogeneity, a proxy for the instrument helps partially identify not only the local average treatment effect, but also the entire potential outcomes distributions for compliers. I exploit the fact that the distribution of the observed outcome in each group defined by the treatment and the instrument is a mixture of the distributions of interest. I write the identified set in the form of conditional moment inequalities, and provide an easily implementable inference procedure. Under some tail restrictions, the potential outcomes distributions are point-identified for compliers. Finally, I illustrate my methodology on data from the National Longitudinal Survey of Young Men to estimate returns to college using college proximity as a proxy for the instrument low college cost. I find that a college degree increases the average hourly wage of the compliers by 15%–30%.

Suggested Citation

  • Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
  • Handle: RePEc:eee:econom:v:234:y:2023:i:2:p:479-511
    DOI: 10.1016/j.jeconom.2021.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    2. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    5. Pedro Carneiro & James J. Heckman & Edward Vytlacil, 2010. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," Econometrica, Econometric Society, vol. 78(1), pages 377-394, January.
    6. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    7. Jochmans, Koen & Henry, Marc & Salanié, Bernard, 2017. "Inference On Two-Component Mixtures Under Tail Restrictions," Econometric Theory, Cambridge University Press, vol. 33(3), pages 610-635, June.
    8. Stephen V. Cameron & Christopher Taber, 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 132-182, February.
    9. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    10. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    11. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    12. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    13. Victor Chernozhukov & Wooyoung Kim & Sokbae Lee & Adam M. Rosen, 2015. "Implementing intersection bounds in Stata," Stata Journal, StataCorp LP, vol. 15(1), pages 21-44, March.
    14. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    15. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    16. Kling, Jeffrey R, 2001. "Interpreting Instrumental Variables Estimates of the Returns to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 358-364, July.
    17. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    18. Shi, Xiaoxia & Shum, Matthew, 2015. "Simple Two-Stage Inference For A Class Of Partially Identified Models," Econometric Theory, Cambridge University Press, vol. 31(3), pages 493-520, June.
    19. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    20. Toru Kitagawa, 2015. "A Test for Instrument Validity," Econometrica, Econometric Society, vol. 83(5), pages 2043-2063, September.
    21. Takuya Ura, 2018. "Heterogeneous treatment effects with mismeasured endogenous treatment," Quantitative Economics, Econometric Society, vol. 9(3), pages 1335-1370, November.
    22. Azeem M. Shaikh & Edward J. Vytlacil, 2011. "Partial Identification in Triangular Systems of Equations With Binary Dependent Variables," Econometrica, Econometric Society, vol. 79(3), pages 949-955, May.
    23. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    24. Ismael Mourifié & Yuanyuan Wan, 2017. "Testing Local Average Treatment Effect Assumptions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 305-313, May.
    25. Zhichao Jiang & Peng Ding, 2020. "Measurement errors in the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 107(1), pages 238-245.
    26. Janet Currie & Enrico Moretti, 2003. "Mother's Education and the Intergenerational Transmission of Human Capital: Evidence from College Openings," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1495-1532.
    27. Hans Fricke & Markus Frölich & Martin Huber & Michael Lechner, 2020. "Endogeneity and non‐response bias in treatment evaluation – nonparametric identification of causal effects by instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 481-504, August.
    28. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    29. Darren Lubotsky & Martin Wittenberg, 2006. "Interpretation of Regressions with Multiple Proxies," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 549-562, August.
    30. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature," PIER Working Paper Archive 15-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Nov 2015.
    31. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    32. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    33. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    34. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    35. Chiburis, Richard C., 2010. "Semiparametric bounds on treatment effects," Journal of Econometrics, Elsevier, vol. 159(2), pages 267-275, December.
    36. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    37. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    38. Martin Huber & Lukas Laffers & Giovanni Mellace, 2017. "Sharp IV Bounds on Average Treatment Effects on the Treated and Other Populations Under Endogeneity and Noncompliance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 56-79, January.
    39. Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Partial Identification of Local Average Treatment Effects With an Invalid Instrument," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 534-545, October.
    40. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    41. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    42. Chen, Le-Yu & Szroeter, Jerzy, 2014. "Testing multiple inequality hypotheses: A smoothed indicator approach," Journal of Econometrics, Elsevier, vol. 178(P3), pages 678-693.
    43. Xuan Chen & Carlos A. Flores, 2015. "Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 523-540, October.
    44. Leonardo Grilli & Fabrizia Mealli, 2008. "Nonparametric Bounds on the Causal Effect of University Studies on Job Opportunities Using Principal Stratification," Journal of Educational and Behavioral Statistics, , vol. 33(1), pages 111-130, March.
    45. Chalak, Karim, 2017. "Instrumental Variables Methods With Heterogeneity And Mismeasured Instruments," Econometric Theory, Cambridge University Press, vol. 33(1), pages 69-104, February.
    46. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    47. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    48. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    49. Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2018. "Going beyond LATE: Bounding Average Treatment Effects of Job Corps Training," Journal of Human Resources, University of Wisconsin Press, vol. 53(4), pages 1050-1099.
    50. Marc Henry & Yuichi Kitamura & Bernard Salanié, 2014. "Partial identification of finite mixtures in econometric models," Quantitative Economics, Econometric Society, vol. 5, pages 123-144, March.
    51. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    52. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    53. Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
    54. V. Joseph Hotz & Charles H. Mullin & Seth G. Sanders, 1997. "Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 575-603.
    55. Azeem Shaikh & Edward Vytlacil, 2005. "Threshold Crossing Models and Bounds on Treatment Effects: A Nonparametric Analysis," NBER Technical Working Papers 0307, National Bureau of Economic Research, Inc.
    56. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    57. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    58. Donna K. Ginther, 2000. "Alternative Estimates of the Effect of Schooling on Earnings," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 103-116, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Possebom, 2019. "Sharp Bounds for the Marginal Treatment Effect with Sample Selection," Papers 1904.08522, arXiv.org.
    2. Rui Wang, 2023. "Point Identification of LATE with Two Imperfect Instruments," Papers 2303.13795, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    3. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    4. Pedro Carneiro & Michael Lokshin & Nithin Umapathi, 2017. "Average and Marginal Returns to Upper Secondary Schooling in Indonesia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 16-36, January.
    5. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    6. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    7. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Rojas, Eugenio & Sánchez, Rafael & Villena, Mauricio G., 2016. "Credit constraints in higher education in a context of unobserved heterogeneity," Economics of Education Review, Elsevier, vol. 52(C), pages 225-250.
    9. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    10. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    11. Kyunghoon Ban & Désiré Kédagni, 2022. "Nonparametric bounds on treatment effects with imperfect instruments [Instrument-based estimation with binarized treatments: Issues and tests for the exclusion restriction]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 477-493.
    12. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    13. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    14. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    15. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    16. Rui Wang, 2023. "Point Identification of LATE with Two Imperfect Instruments," Papers 2303.13795, arXiv.org.
    17. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    18. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    19. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    20. Ge, Suqin, 2013. "Estimating the returns to schooling: Implications from a dynamic discrete choice model," Labour Economics, Elsevier, vol. 20(C), pages 92-105.

    More about this item

    Keywords

    Potential outcome; Instrumental variable; LATE; Compliers; Mixture models;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:234:y:2023:i:2:p:479-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.