IDEAS home Printed from https://ideas.repec.org/p/hal/psewpa/halshs-00699646.html
   My bibliography  Save this paper

Late Again with Defiers

Author

Listed:
  • Clément de Chaisemartin

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Xavier d'Haultfoeuille

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique)

Abstract

We show that the Wald statistic still identifies a causal effect if instrument monotonicity is replaced by a weaker condition, which states that the potential propensities to be treated with or without the instrument should have the same distribution, conditional on potential outcomes. This holds for instance if the slippages between these potential propensities and the average propensity are independent of potential outcomes. In this framework, the Wald statistic identifies a LATE on a population which comprises both compliers and always takers.

Suggested Citation

  • Clément de Chaisemartin & Xavier d'Haultfoeuille, 2012. "Late Again with Defiers," PSE Working Papers halshs-00699646, HAL.
  • Handle: RePEc:hal:psewpa:halshs-00699646
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00699646
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00699646/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    2. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    3. Luc Behaghel & Bruno Crépon & Marc Gurgand & Thomas Le Barbanchon, 2015. "Please Call Again: Correcting Nonresponse Bias in Treatment Effect Models," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1070-1080, December.
    4. DiNardo, John & Lee, David S., 2011. "Program Evaluation and Research Designs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 5, pages 463-536, Elsevier.
    5. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    6. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    7. Huber, Martin & Mellace, Giovanni, 2012. "Relaxing monotonicity in the identification of local average treatment effects," Economics Working Paper Series 1212, University of St. Gallen, School of Economics and Political Science.
    8. Jeffrey R. Kling, 2006. "Incarceration Length, Employment, and Earnings," American Economic Review, American Economic Association, vol. 96(3), pages 863-876, June.
    9. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    10. Rashmi Barua & Kevin Lang, 2009. "School Entry, Educational Attainment and Quarter of Birth: A Cautionary Tale of LATE," NBER Working Papers 15236, National Bureau of Economic Research, Inc.
    11. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    14. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    15. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    16. Huber, Martin, 2012. "Statistical verification of a natural "natural experiment": Tests and sensitivity checks for the sibling sex ratio instrument," Economics Working Paper Series 1219, University of St. Gallen, School of Economics and Political Science.
    17. Clément de Chaisemartin & Xavier d'Haultfoeuille, 2012. "Late Again with Defiers," PSE Working Papers halshs-00699646, HAL.
    18. Kelly Bedard & Elizabeth Dhuey, 2006. "The Persistence of Early Childhood Maturity: International Evidence of Long-Run Age Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1437-1472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    3. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    4. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    5. Chaisemartin, Clément de, 2014. "Tolerating defiance? Local average treatment effects without monotonicity," CAGE Online Working Paper Series 197, Competitive Advantage in the Global Economy (CAGE).
    6. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    7. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    8. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.
    9. Schmieder, Julia, 2021. "Fertility as a driver of maternal employment," Labour Economics, Elsevier, vol. 72(C).
    10. Hsu, Yu-Chin & Huang, Ta-Cheng & Xu, Haiqing, 2023. "Testing For Unobserved Heterogeneous Treatment Effects With Observational Data," Econometric Theory, Cambridge University Press, vol. 39(3), pages 582-622, June.
    11. Julia Schmieder, 2020. "Fertility as a Driver of Maternal Employment," Discussion Papers of DIW Berlin 1882, DIW Berlin, German Institute for Economic Research.
    12. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    13. Fiorini, Mario & Katrien Stevens, 2014. "Assessing the Monotonicity Assumption in IV and fuzzy RD designs," Working Papers 2014-13, University of Sydney, School of Economics.
    14. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    15. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    16. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    17. Ismael Mourifié & Yuanyuan Wan, 2017. "Testing Local Average Treatment Effect Assumptions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 305-313, May.
    18. Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023. "Inference on individual treatment effects in nonseparable triangular models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
    19. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
    20. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.

    More about this item

    Keywords

    Instrumental Variables; Monotonicity; Defiers; Rank Invariance; Exchangeable random variables;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:psewpa:halshs-00699646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.