IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0118.html
   My bibliography  Save this paper

Identification and Estimation of Local Average Treatment Effects

Author

Listed:
  • Joshua D. Angrist
  • Guido W. Imbens

Abstract

We investigate conditions sufficient for identification of average treatment effects using instrumental variables. First we show that the existence of valid instruments is not sufficient to identify any meaningful average treatment effect. We then establish that the combination of an instrument and a condition on the relation between the instrument and the participation status is sufficient for identification of a local average treatment effect for those who can be induced to change their participation status by changing the value of the instrument. Finally we derive the probability limit of the standard IV estimator under these conditions. It is seen to be a weighted average of local average treatment effects.

Suggested Citation

  • Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0118
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0118.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    2. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    3. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    4. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    5. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    6. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    7. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    5. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    6. Angrist, J.D. & Imbens, G.W., 1991. "Sources of Identifying Information in Evaluation Models," Harvard Institute of Economic Research Working Papers 1568, Harvard - Institute of Economic Research.
    7. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    8. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    9. Kaitlin Anderson & Gema Zamarro & Jennifer Steele & Trey Miller, 2021. "Comparing Performance of Methods to Deal With Differential Attrition in Randomized Experimental Evaluations," Evaluation Review, , vol. 45(1-2), pages 70-104, February.
    10. Angrist, J.D. & Imbens, G.W., 1991. "Sources of Identifying Information in Evaluation Models," Harvard Institute of Economic Research Working Papers 1568, Harvard - Institute of Economic Research.
    11. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    12. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    13. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    14. repec:zbw:rwidps:0023 is not listed on IDEAS
    15. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    16. Robert Moffitt, 1991. "Program Evaluation With Nonexperimental Data," Evaluation Review, , vol. 15(3), pages 291-314, June.
    17. Rafael Di Tella & Ernesto Schargrodsky, 2004. "Do Police Reduce Crime? Estimates Using the Allocation of Police Forces After a Terrorist Attack," American Economic Review, American Economic Association, vol. 94(1), pages 115-133, March.
    18. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    19. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    20. Christopher Bollinger & James P. Ziliak & Kenneth R. Troske, 2011. "Down from the Mountain: Skill Upgrading and Wages in Appalachia," Journal of Labor Economics, University of Chicago Press, vol. 29(4), pages 819-857.
    21. Per-Anders Edin & Peter Fredriksson & Olof Åslund, 2003. "Ethnic Enclaves and the Economic Success of Immigrants—Evidence from a Natural Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 329-357.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.