IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v26y2023i3p378-404..html
   My bibliography  Save this article

It is never too LATE: a new look at local average treatment effects with or without defiers

Author

Listed:
  • Christian M Dahl
  • Martin Huber
  • Giovanni Mellace

Abstract

SummaryIn heterogeneous treatment effect models with endogeneity, identification of the local average treatment effect (LATE) typically relies on the availability of an exogenous instrument monotonically related to treatment participation. First, we demonstrate that a strictly weaker local monotonicity condition—invoked for specific potential outcome values rather than globally—identifies the LATEs on compliers and defiers. Second, we show that our identification results apply to subsets of compliers and defiers when imposing an even weaker local compliers-defiers assumption that allows for both types at any potential outcome value. We propose estimators that are potentially more efficient than two-stage least squares (2SLS) in finite samples, even in cases where 2SLS is consistent. Finally, we provide an empirical application to estimating returns to education using the quarter of birth instrument.

Suggested Citation

  • Christian M Dahl & Martin Huber & Giovanni Mellace, 2023. "It is never too LATE: a new look at local average treatment effects with or without defiers," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 378-404.
  • Handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:378-404.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utad013
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kasey S. Buckles & Daniel M. Hungerman, 2013. "Season of Birth and Later Outcomes: Old Questions, New Answers," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 711-724, July.
    2. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    3. Ismael Mourifié & Yuanyuan Wan, 2017. "Testing Local Average Treatment Effect Assumptions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 305-313, May.
    4. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    5. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    6. Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Anderson, Gordon & Linton, Oliver & Whang, Yoon-Jae, 2012. "Nonparametric estimation and inference about the overlap of two distributions," Journal of Econometrics, Elsevier, vol. 171(1), pages 1-23.
    8. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    9. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    10. Kelly Bedard & Elizabeth Dhuey, 2006. "The Persistence of Early Childhood Maturity: International Evidence of Long-Run Age Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1437-1472.
    11. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    12. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    13. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Fiorini & Katrien Stevens, 2021. "Scrutinizing the Monotonicity Assumption in IV and fuzzy RD designs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1475-1526, December.
    2. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    3. Huntington-Klein Nick, 2020. "Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 182-208, January.
    4. van ’t Hoff, Nadja & Lewbel, Arthur & Mellace, Giovanni, 2023. "Limited Monotonicity and the Combined Compliers LATE," Discussion Papers on Economics 2/2023, University of Southern Denmark, Department of Economics.
    5. Zhenting Sun & Kaspar Wuthrich, 2022. "Pairwise Valid Instruments," Papers 2203.08050, arXiv.org, revised Jan 2024.
    6. Huntington-Klein Nick, 2020. "Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 182-208, January.
    7. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    3. Huber, Martin & Mellace, Giovanni, 2012. "Relaxing monotonicity in the identification of local average treatment effects," Economics Working Paper Series 1212, University of St. Gallen, School of Economics and Political Science.
    4. Mario Fiorini & Katrien Stevens, 2021. "Scrutinizing the Monotonicity Assumption in IV and fuzzy RD designs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1475-1526, December.
    5. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Zhenting Sun & Kaspar Wuthrich, 2022. "Pairwise Valid Instruments," Papers 2203.08050, arXiv.org, revised Jan 2024.
    7. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    8. Fiorini, Mario & Katrien Stevens, 2014. "Assessing the Monotonicity Assumption in IV and fuzzy RD designs," Working Papers 2014-13, University of Sydney, School of Economics.
    9. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    10. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    11. Ron Diris, 2017. "Don't Hold Back? The Effect of Grade Retention on Student Achievement," Education Finance and Policy, MIT Press, vol. 12(3), pages 312-341, Summer.
    12. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    13. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    14. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    15. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    16. Mazzutti, Caio Cícero Toledo Piza da Costa, 2016. "Three essays on the causal impacts of child labour laws in Brazil," Economics PhD Theses 0616, Department of Economics, University of Sussex Business School.
    17. Rashmi Barua & Kevin Lang, 2009. "School Entry, Educational Attainment and Quarter of Birth: A Cautionary Tale of LATE," NBER Working Papers 15236, National Bureau of Economic Research, Inc.
    18. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    19. Lewbel, Arthur & Yang, Thomas Tao, 2016. "Identifying the average treatment effect in ordered treatment models without unconfoundedness," Journal of Econometrics, Elsevier, vol. 195(1), pages 1-22.
    20. Patrick Kline & Christopher R. Walters, 2019. "On Heckits, LATE, and Numerical Equivalence," Econometrica, Econometric Society, vol. 87(2), pages 677-696, March.

    More about this item

    Keywords

    causal effects; IV; LATE; local CD; local monotonicity; principal stratification;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:378-404.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.