IDEAS home Printed from https://ideas.repec.org/f/pka506.html
   My authors  Follow this author

Pradeep Singh Kashyap

Personal Details

First Name:Pradeep
Middle Name:Singh
Last Name:Kashyap
Suffix:
RePEc Short-ID:pka506
http://www.pskashyap.webs.com
College of Forestry & Hill Agriculture G.B.Pant University of Agriculture & Technology Hill Campus, Ranichauri - 249199 Tehri Garhwal, Uttarakhand India
+91-9411144044

Affiliation

(in no particular order)

Indian Institute of Technology, Kharagpur

(Indian Institute of Technology, Kharagpur) http://www.iitkgp.ac.in
India

G. B. Pant University of Agriculture & Technology, Pantnagar

http://www.gbpuat.ac.in
India

GBPUA&T, Hill Campus, Ranichauri

http://www.gbpuat.ac.in/acads/cfor/index.htm
India

Research output

as
Jump to: Articles

Articles

  1. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
  2. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2003. "Effective management of irrigation water for wheat under stressed conditions," Agricultural Water Management, Elsevier, vol. 63(1), pages 37-56, November.
  3. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
  4. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.

    Cited by:

    1. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    2. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2016. "Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant," Agricultural Water Management, Elsevier, vol. 164(P2), pages 331-339.
    4. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    5. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    6. Eiasu, B.K. & Steyn, J.M. & Soundy, P., 2009. "Rose-scented geranium (Pelargonium capitatumxP. radens) growth and essential oil yield response to different soil water depletion regimes," Agricultural Water Management, Elsevier, vol. 96(6), pages 991-1000, June.
    7. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    8. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    9. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
    11. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    12. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    13. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    14. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    15. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    16. DeJonge, Kendall C. & Kaleita, Amy L. & Thorp, Kelly R., 2007. "Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 99-109, August.
    17. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    18. He, Jianqiang & Dukes, Michael D. & Hochmuth, George J. & Jones, James W. & Graham, Wendy D., 2012. "Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 109(C), pages 61-70.
    19. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    20. Kamkar, B. & Daneshmand, A.R. & Ghooshchi, F. & Shiranirad, A.H. & Safahani Langeroudi, A.R., 2011. "The effects of irrigation regimes and nitrogen rates on some agronomic traits of canola under a semiarid environment," Agricultural Water Management, Elsevier, vol. 98(6), pages 1005-1012, April.
    21. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    22. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    23. Muhammad Irfan Ahmad & Adnan Noor Shah & Jianqiang Sun & Youhong Song, 2020. "Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids," Agriculture, MDPI, vol. 10(9), pages 1-16, August.
    24. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    25. Salazar, M.R. & Hook, J.E. & Garcia y Garcia, A. & Paz, J.O. & Chaves, B. & Hoogenboom, G., 2012. "Estimating irrigation water use for maize in the Southeastern USA: A modeling approach," Agricultural Water Management, Elsevier, vol. 107(C), pages 104-111.
    26. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    27. Hassanli, Ali Morad & Ebrahimizadeh, Mohammad Ali & Beecham, Simon, 2009. "The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region," Agricultural Water Management, Elsevier, vol. 96(1), pages 93-99, January.
    28. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    29. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    30. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    31. Wang, Daobo & Li, Fusheng & Nong, Mengling, 2017. "Response of yield and water use efficiency to different irrigation levels at different growth stages of Kenaf and crop water production function," Agricultural Water Management, Elsevier, vol. 179(C), pages 177-183.
    32. Ratchaneewan Chuchird & Nophea Sasaki & Issei Abe, 2017. "Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    33. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    34. Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
    35. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).

  2. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2003. "Effective management of irrigation water for wheat under stressed conditions," Agricultural Water Management, Elsevier, vol. 63(1), pages 37-56, November.

    Cited by:

    1. Kundu, M. & Chakraborty, P.K. & Mukherjee, A. & Sarkar, S., 2008. "Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 95(4), pages 383-390, April.
    2. Gontia, N.K. & Tiwari, K.N., 2008. "Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry," Agricultural Water Management, Elsevier, vol. 95(10), pages 1144-1152, October.
    3. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    4. Arora, V.K. & Singh, Harbakhshinder & Singh, Bijay, 2007. "Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 22-30, December.
    5. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    6. Meena, Raj Pal & Karnam, Venkatesh & Tripathi, S.C. & Jha, Ankita & Sharma, R.K. & Singh, G.P., 2019. "Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources," Agricultural Water Management, Elsevier, vol. 214(C), pages 38-46.
    7. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    8. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    9. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    10. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    12. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2021. "Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain," Agricultural Water Management, Elsevier, vol. 257(C).
    13. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    14. Lobell, David B. & Ortiz-Monasterio, J. Ivan, 2006. "Evaluating strategies for improved water use in spring wheat with CERES," Agricultural Water Management, Elsevier, vol. 84(3), pages 249-258, August.
    15. Behera, S.K. & Panda, R.K., 2009. "Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling," Agricultural Water Management, Elsevier, vol. 96(11), pages 1532-1540, November.
    16. Budy P. Resosudarmo & Kimlong Chheng, 2021. "Irrigation inequality, rice farming productivity and food insecurity in rural Cambodia," Departmental Working Papers 2021-19, The Australian National University, Arndt-Corden Department of Economics.
    17. Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.

  3. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.

    Cited by:

    1. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    2. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    3. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    4. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    5. Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
    6. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    7. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    8. Sheng Li & Yulia Kupriyanovich & Cameron Wagg & Fangzhou Zheng & Sheldon Hann, 2023. "Water Deficit Duration Affects Potato Plant Growth, Yield and Tuber Quality," Agriculture, MDPI, vol. 13(10), pages 1-16, October.
    9. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    10. O’Shaughnessy, Susan A. & Rho, Hyungmin & Colaizzi, Paul D. & Workneh, Fekede & Rush, Charles M., 2022. "Impact of zebra chip disease and irrigation levels on potato production," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    13. Kammoun, Mariem & Bouallous, Ons & Ksouri, Mohamed Fakhri & Gargouri-Bouzid, Radhia & Nouri-Ellouz, Oumèma, 2018. "Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum L.) cultivated under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 9-19.
    14. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    15. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    16. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    17. Rahil, M.H. & Qanadillo, A., 2015. "Effects of different irrigation regimes on yield and water use efficiency of cucumber crop," Agricultural Water Management, Elsevier, vol. 148(C), pages 10-15.
    18. Cheng, Minghui & Wang, Haidong & Zhang, Fucang & Wang, Xiukang & Liao, Zhenqi & Zhang, Shaohui & Yang, Qiliang & Fan, Junliang, 2023. "Effects of irrigation and fertilization regimes on tuber yield, water-nutrient uptake and productivity of potato under drip fertigation in sandy regions of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    20. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    21. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.

  4. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.

    Cited by:

    1. Zhao, Chuanyan & Nan, Zhongren & Cheng, Guodong, 2005. "Methods for estimating irrigation needs of spring wheat in the middle Heihe basin, China," Agricultural Water Management, Elsevier, vol. 75(1), pages 54-70, July.
    2. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    3. Hossein Tabari, 2010. "Evaluation of Reference Crop Evapotranspiration Equations in Various Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2311-2337, August.
    4. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    5. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    6. Liu, Xiaoying & Mei, Xurong & Li, Yuzhong & Wang, Qingsuo & Zhang, Yanqing & Porter, John Roy, 2009. "Variation in reference crop evapotranspiration caused by the Ångström-Prescott coefficient: Locally calibrated versus the FAO recommended," Agricultural Water Management, Elsevier, vol. 96(7), pages 1137-1145, July.
    7. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    8. Zhang, Xifeng & Zhang, Lanhui & He, Chansheng & Li, Jinlin & Jiang, Yiwen & Ma, Libang, 2014. "Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China – A case study of the Dunhuang oasis," Agricultural Water Management, Elsevier, vol. 146(C), pages 270-279.
    9. Gonzalez T., Francisco & Pavek, Mark J. & Holden, Zachary J. & Garza, Rudy, 2023. "Evaluating potato evapotranspiration and crop coefficients in the Columbia Basin of Washington state," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    11. Wei Yang & Zhifeng Yang, 2013. "Development of a Long-term, Ecologically Oriented Dam Release Plan for the Lake Baiyangdian Sub-basin, Northern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 485-506, January.
    12. Craig, I.P., 2006. "Comparison of precise water depth measurements on agricultural storages with open water evaporation estimates," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 193-200, September.
    13. Yuan, Bao-Zhong & Nishiyama, Soichi & Kang, Yaohu, 2003. "Effects of different irrigation regimes on the growth and yield of drip-irrigated potato," Agricultural Water Management, Elsevier, vol. 63(3), pages 153-167, December.
    14. P. Mallikarjuna & S. Jyothy & D. Murthy & K. Reddy, 2014. "Performance of Recalibrated Equations for the Estimation of Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4513-4535, October.
    15. Jin, Xiuliang & Yang, Guijun & Xue, Xuzhang & Xu, Xingang & Li, Zhenhai & Feng, Haikuan, 2017. "Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season," Agricultural Water Management, Elsevier, vol. 189(C), pages 27-38.
    16. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Petrone, R.M. & Smith, C. & Macrae, M.L. & English, M.C., 2006. "Riparian zone equilibrium and actual evapotranspiration in a first order agricultural catchment in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 86(3), pages 240-248, December.
    18. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    19. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    20. Alexandris, Stavros & Proutsos, Nikolaos, 2020. "How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates?," Agricultural Water Management, Elsevier, vol. 237(C).
    21. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    22. Helge Bormann, 2011. "Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations," Climatic Change, Springer, vol. 104(3), pages 729-753, February.
    23. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    24. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    25. Helman, David & Bonfil, David J. & Lensky, Itamar M., 2019. "Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data," Agricultural Water Management, Elsevier, vol. 211(C), pages 210-219.
    26. Duchemin, B. & Hadria, R. & Erraki, S. & Boulet, G. & Maisongrande, P. & Chehbouni, A. & Escadafal, R. & Ezzahar, J. & Hoedjes, J.C.B. & Kharrou, M.H. & Khabba, S. & Mougenot, B. & Olioso, A. & Rodrig, 2006. "Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices," Agricultural Water Management, Elsevier, vol. 79(1), pages 1-27, January.
    27. Mallikarjuna Perugu & Aruna Singam & Chandra Kamasani, 2013. "Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1489-1500, March.
    28. Seema Chauhan & R. Shrivastava, 2009. "Performance Evaluation of Reference Evapotranspiration Estimation Using Climate Based Methods and Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 825-837, March.
    29. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    30. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    31. Xiaoying, Liu & Erda, Lin, 2005. "Performance of the Priestley-Taylor equation in the semiarid climate of North China," Agricultural Water Management, Elsevier, vol. 71(1), pages 1-17, January.
    32. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    33. Han, Huanhao & Cui, Yuanlai & Huang, Ying & Wang, Shupeng & Duan, Qicai & Zhang, Lei, 2019. "Impacts of the channel/barrier effect and three-dimensional climate—A case study of rice water requirement and irrigation quota in Yunnan, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 317-327.
    34. Hassan Afzaal & Aitazaz A. Farooque & Farhat Abbas & Bishnu Acharya & Travis Esau, 2020. "Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    35. Unlu, Mustafa & Kanber, Riza & Senyigit, Ulas & Onaran, Huseyin & Diker, Kenan, 2006. "Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey," Agricultural Water Management, Elsevier, vol. 79(1), pages 43-71, January.
    36. Asnor Ishak & Renji Remesan & Prashant Srivastava & Tanvir Islam & Dawei Han, 2013. "Error Correction Modelling of Wind Speed Through Hydro-Meteorological Parameters and Mesoscale Model: A Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 1-23, January.
    37. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Pradeep Singh Kashyap should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.