IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v198y2018icp28-38.html
   My bibliography  Save this article

Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt

Author

Listed:
  • Mattar, Mohamed A.

Abstract

The Penman-Monteith FAO-56 equation requires the complete climatic records for estimating reference evapotranspiration (ETo). The present study is aimed at developing and evaluating a gene expression programming (GEP) model for estimating mean monthly ETo by using minimal amount of climatic data. The data used in the analysis are collected from 32 weather stations in Egypt through the CLIMWAT database. The results showed that the accuracy of the GEP model significantly improved when either mean relative humidity (RH) or wind speed at 2-m height (u2) was used as additional input variables. The GEP model with the inputs as maximum and minimum air temperature, RH, and u2 showed the lowest root mean square error (0.426 mm d−1 and 0.430 mm d−1) and, the highest coefficient of determination, (0.963 and 0.962) overall index of model performance (0.960 and 0.960), and index of agreement (0.991 and 0.990) for training and testing sets, respectively. Comparing the results of GEP models with other empirical models showed that the GEP technique are more accurate and can be employed successfully in modelling ETo.

Suggested Citation

  • Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
  • Handle: RePEc:eee:agiwat:v:198:y:2018:i:c:p:28-38
    DOI: 10.1016/j.agwat.2017.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417304092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoying, Liu & Erda, Lin, 2005. "Performance of the Priestley-Taylor equation in the semiarid climate of North China," Agricultural Water Management, Elsevier, vol. 71(1), pages 1-17, January.
    2. Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
    3. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    4. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    5. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.
    6. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.
    7. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    8. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    9. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    10. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    4. Mattar, Mohamed A. & Roy, Dilip Kumar & Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2022. "Machine learning and regression-based techniques for predicting sprinkler irrigation's wind drift and evaporation losses," Agricultural Water Management, Elsevier, vol. 265(C).
    5. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    7. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    2. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    5. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    6. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
    8. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    9. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    10. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    11. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    12. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Liu, Xiaoying & Mei, Xurong & Li, Yuzhong & Wang, Qingsuo & Zhang, Yanqing & Porter, John Roy, 2009. "Variation in reference crop evapotranspiration caused by the Ångström-Prescott coefficient: Locally calibrated versus the FAO recommended," Agricultural Water Management, Elsevier, vol. 96(7), pages 1137-1145, July.
    15. Hossein Tabari, 2010. "Evaluation of Reference Crop Evapotranspiration Equations in Various Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2311-2337, August.
    16. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Traore, Seydou & Wang, Yu-Min & Kerh, Tienfuan, 2010. "Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone," Agricultural Water Management, Elsevier, vol. 97(5), pages 707-714, May.
    18. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    19. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:198:y:2018:i:c:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.