IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i4p383-390.html
   My bibliography  Save this article

Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)

Author

Listed:
  • Kundu, M.
  • Chakraborty, P.K.
  • Mukherjee, A.
  • Sarkar, S.

Abstract

The hypothesis was tested, whether soil wetness and phosphorus status could regulate the evapotranspiration rate (ETR), which is of special interest in the lower Gangetic Plain. Rajmash was grown during November-February of 2003-2004 and 2004-2005 on a sandy loam soil, and was irrigated when cumulative pan evaporation (CPE) attained the value of 33 mm (CPE33); 44 mm (CPE44) and 66 mm (CPE66). Four levels of phosphate application were 0 kg P2O5 ha-1 (P0); 30 kg P2O5 ha-1 (P30); 60 kg P2O5 ha-1 (P60) and 90 kg P2O5 ha-1 (P90). Seed yield under CPE33 was 1.37 mg ha-1 and reduced by 18% and 35%, respectively under CPE44 and CPE66. Continuous increasing trend in yield was recorded with an increase in phosphate level (PL). Irrespective of growth stages, similar trends were recorded for leaf area index (LAI). Maximum variation in LAI among the treatments was recorded at 60 days after sowing. On average, actual ETR was 1.37 mm day-1 under CPE33 and declined by 13% and 16% under CPE44 and CPE66, respectively. Variation in ETR under different PL was highest under CPE33 and lowest under CPE44. Except P90, irrespective of PL, highest value of water use efficiency (WUE) was obtained under CPE44. However, magnitude of net evapotranspiration efficiency (WUEET) and irrigation efficiency (WUEI) attained the highest level under CPE33 regime. All water use indices showed an increasing trend with the increase in phosphate level from 0 to 90 kg ha-1. Impact of phosphorus on various parameters was pronounced under CPE33.

Suggested Citation

  • Kundu, M. & Chakraborty, P.K. & Mukherjee, A. & Sarkar, S., 2008. "Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 95(4), pages 383-390, April.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:4:p:383-390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00287-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2003. "Effective management of irrigation water for wheat under stressed conditions," Agricultural Water Management, Elsevier, vol. 63(1), pages 37-56, November.
    3. Sarkar, S. & Kar, S., 1995. "Simulation of evapotranspiration from groundnut under wet and dry conditions," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 299-307, July.
    4. Sharma, D. K. & Singh, K. N., 1993. "Effect of irrigation on growth, yield and evapotranspiration of mustard (Brassica juncea) in partially reclaimed sodic soils," Agricultural Water Management, Elsevier, vol. 23(3), pages 225-232, June.
    5. Li, Feng-Min & Song, Qiu-Hua & Liu, Hong-Sheng & Li, Feng-Rui & Liu, Xiao-Lan, 2001. "Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 49(3), pages 173-183, August.
    6. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarkar, S. & Nanda, M.K. & Biswas, M. & Mukherjee, A. & Kundu, M., 2009. "Different indices to characterize water use pattern of irrigated cauliflower (Brassica oleracea L. var. botrytis) in a hot sub-humid climate of India," Agricultural Water Management, Elsevier, vol. 96(10), pages 1475-1482, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    2. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    3. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    4. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    5. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    6. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    7. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    8. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    9. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    10. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    11. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    12. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    13. Ali, M.H. & Talukder, M.S.U., 2008. "Increasing water productivity in crop production--A synthesis," Agricultural Water Management, Elsevier, vol. 95(11), pages 1201-1213, November.
    14. Mandal, K.G. & Hati, K.M. & Misra, A.K. & Bandyopadhyay, K.K., 2006. "Assessment of irrigation and nutrient effects on growth, yield and water use efficiency of Indian mustard (Brassica juncea) in central India," Agricultural Water Management, Elsevier, vol. 85(3), pages 279-286, October.
    15. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Sarkar, S. & Goswami, S.B. & Mallick, S. & Nanda, M.K., 2008. "Different indices to characterize water use pattern of micro-sprinkler irrigated onion (Allium cepa L.)," Agricultural Water Management, Elsevier, vol. 95(5), pages 625-632, May.
    17. Raddad, E.Y. & Luukkanen, O., 2007. "The influence of different Acacia senegal agroforestry systems on soil water and crop yields in clay soils of the Blue Nile region, Sudan," Agricultural Water Management, Elsevier, vol. 87(1), pages 61-72, January.
    18. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    19. Liu, Jianchao & Feng, Hao & He, Jianqiang & Chen, Haixin & Ding, Dianyuan, 2018. "The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat," Agricultural Water Management, Elsevier, vol. 210(C), pages 217-223.
    20. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:4:p:383-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.