IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004402.html
   My bibliography  Save this article

Optimizing wheat supplementary irrigation: Integrating soil stress and crop water stress index for smart scheduling

Author

Listed:
  • Kumari, Arti
  • Singh, D.K.
  • Sarangi, A.
  • Hasan, Murtaza
  • Sehgal, Vinay Kumar

Abstract

A two-year field experiment was conducted to integrate soil moisture stress with the Crop Water Stress Index (CWSI) for optimizing irrigation in winter wheat (Triticum aestivum L.) under varying irrigation regimes. The study took place at the Water Technology Centre (WTC-02) of ICAR-IARI, New Delhi, where the climate shows a blend of monsoon-influenced humid subtropical and semi-arid conditions. Using a randomized block design (RBD), five irrigation treatments were applied: full irrigation and deficit irrigation (DI) at 15 %, 30 %, 45 %, and 60 % levels. Canopy and ambient air temperature data, along with vapor pressure deficit (VPD), were recorded using a developed integrated sensing device to empirically determine the lower baseline equations and upper threshold for CWSI computation at pre-heading and post-heading stages. The slope (m), intercept (c) of the lower baseline equation, and upper threshold (UL) for pre-heading and post-heading were found: m: −1.94, c: −1.33, UL: 1.92°C and m: −1.30, c: −2.37, UL: 2.0°C, respectively. Results showed that increasing water deficit levels led to significant reductions in grain yield, biomass production, and harvest index. A strong negative correlation (R² = 0.95 and 0.93) between mean seasonal CWSI and yield attributes highlighted the utility of CWSI in yield prediction under varying irrigation regimes. It is recommended to schedule irrigation based on the CWSI approach when CWSI ≥0.35 for optimum wheat yields. Integrating CWSI with soil moisture stress provides valuable real-time insights into crop water status, enabling more precise and smart irrigation scheduling.

Suggested Citation

  • Kumari, Arti & Singh, D.K. & Sarangi, A. & Hasan, Murtaza & Sehgal, Vinay Kumar, 2024. "Optimizing wheat supplementary irrigation: Integrating soil stress and crop water stress index for smart scheduling," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004402
    DOI: 10.1016/j.agwat.2024.109104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.