IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v115y2012icp276-284.html
   My bibliography  Save this article

Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime

Author

Listed:
  • Ierna, Anita
  • Mauromicale, Giovanni

Abstract

Excessive amounts of irrigation water are often utilized for early potato cultivated in the Mediterranean basin. Given that water is an expensive and limited resource in semi-arid areas, it is crucial to provide a better irrigation management and/or irrigation technologies that facilitate its efficient and effective use, in turn leading to savings in water. With the aim of achieving appropriate irrigation water regimes in cultivation management of a potato crop in a Mediterranean environment, a two-year experiment was conducted in Sicily (South Italy). The effects of four irrigation regimes (irrigation only at plant emergence, irrigation during the whole cycle, irrigation from tuber initiation up to 50% of tuber growth, irrigation from 50% of tuber growth to the end of tuber growth), on the tuber yield and yield components, on irrigation water productivity (IWP) and on tuber quality, were studied. Our results showed a marked and significant effect of the irrigation regime on tuber yield, IWP, source/sink relationships and dry matter content of tubers. We also demonstrate that high yield levels of potatoes, high IWP and good tuber quality can be reached by irrigating with 100% maximum evapotranspiration (ETm) supply from tuber initiation up to 50% of tuber growth. Compared to irrigation with 100% ETm supply throughout the whole cycle, this allows making savings of irrigation water of roughly 77mmyear−1, which is a significant reduction for the semi-arid areas.

Suggested Citation

  • Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
  • Handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:276-284
    DOI: 10.1016/j.agwat.2012.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    3. Yuan, Bao-Zhong & Nishiyama, Soichi & Kang, Yaohu, 2003. "Effects of different irrigation regimes on the growth and yield of drip-irrigated potato," Agricultural Water Management, Elsevier, vol. 63(3), pages 153-167, December.
    4. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    5. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
    6. Ierna, Anita & Mauromicale, Giovanni, 2006. "Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 193-209, April.
    7. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    8. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    9. Unlu, Mustafa & Kanber, Riza & Senyigit, Ulas & Onaran, Huseyin & Diker, Kenan, 2006. "Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey," Agricultural Water Management, Elsevier, vol. 79(1), pages 43-71, January.
    10. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gitari, Harun I. & Gachene, Charles K.K. & Karanja, Nancy N. & Kamau, Solomon & Nyawade, Shadrack & Sharma, Kalpana & Schulte-Geldermann, Elmar, 2018. "Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems," Agricultural Water Management, Elsevier, vol. 208(C), pages 59-66.
    2. Qin, Shuhao & Zhang, Junlian & Dai, Hailin & Wang, Di & Li, Deming, 2014. "Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area," Agricultural Water Management, Elsevier, vol. 131(C), pages 87-94.
    3. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    4. Hiba Ghazouani & Giovanni Rallo & Amel Mguidiche & Basma Latrech & Boutheina Douh & Abdelhamid Boujelben & Giuseppe Provenzano, 2019. "Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
    5. Zhou, Xuan & Wang, Ruoshui & Gao, Fei & Xiao, Huijie & Xu, Huasen & Wang, Dongmei, 2019. "Apple and maize physiological characteristics and water-use efficiency in an alley cropping system under water and fertilizer coupling in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 1-12.
    6. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    7. Piotr Pszczółkowski & Barbara Sawicka & Tomasz Lenartowicz & Mateusz Pszczółkowski, 2021. "The Dependence of Crop Potatoes on the Level of Irrigation under Polish Conditions," Agriculture, MDPI, vol. 11(2), pages 1-19, January.
    8. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    9. O’Shaughnessy, Susan A. & Rho, Hyungmin & Colaizzi, Paul D. & Workneh, Fekede & Rush, Charles M., 2022. "Impact of zebra chip disease and irrigation levels on potato production," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    2. Ierna, Anita & Pandino, Gaetano & Lombardo, Sara & Mauromicale, Giovanni, 2011. "Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization," Agricultural Water Management, Elsevier, vol. 101(1), pages 35-41.
    3. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    4. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    5. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    6. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    7. Camargo, D.C. & Montoya, F. & Córcoles, J.I. & Ortega, J.F., 2015. "Modeling the impacts of irrigation treatments on potato growth and development," Agricultural Water Management, Elsevier, vol. 150(C), pages 119-128.
    8. Kammoun, Mariem & Bouallous, Ons & Ksouri, Mohamed Fakhri & Gargouri-Bouzid, Radhia & Nouri-Ellouz, Oumèma, 2018. "Agro-physiological and growth response to reduced water supply of somatic hybrid potato plants (Solanum tuberosum L.) cultivated under greenhouse conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 9-19.
    9. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    10. Hassan Afzaal & Aitazaz A. Farooque & Farhat Abbas & Bishnu Acharya & Travis Esau, 2020. "Precision Irrigation Strategies for Sustainable Water Budgeting of Potato Crop in Prince Edward Island," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    11. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    12. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    13. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    14. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    15. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    16. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    17. Onder, Sermet & Caliskan, Mehmet Emin & Onder, Derya & Caliskan, Sevgi, 2005. "Different irrigation methods and water stress effects on potato yield and yield components," Agricultural Water Management, Elsevier, vol. 73(1), pages 73-86, April.
    18. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    19. Pardon, P. & Reubens, B. & Mertens, J. & Verheyen, K. & De Frenne, P. & De Smet, G. & Van Waes, C. & Reheul, D., 2018. "Effects of temperate agroforestry on yield and quality of different arable intercrops," Agricultural Systems, Elsevier, vol. 166(C), pages 135-151.
    20. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:276-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.