Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2016.06.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
- Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2003. "Effective management of irrigation water for wheat under stressed conditions," Agricultural Water Management, Elsevier, vol. 63(1), pages 37-56, November.
- Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
- Stockle, Claudio O. & Williams, Jimmy R. & Rosenberg, Norman J. & Jones, C. Allan, 1992. "A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis," Agricultural Systems, Elsevier, vol. 38(3), pages 225-238.
- Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
- Yang, J. & Greenwood, D. J. & Rowell, D. L. & Wadsworth, G. A. & Burns, I. G., 2000. "Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE," Agricultural Systems, Elsevier, vol. 64(1), pages 37-53, April.
- Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
- Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
- McCown, R.L. & Hammer, G.L. & Hargreaves, J.N.G. & Holzworth, D. & Huth, N.I., 1995. "APSIM: an agricultural production system simulation model for operational research," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 225-231.
- Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
- Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
- Rinaldi, Michele, 2001. "Application of EPIC model for irrigation scheduling of sunflower in Southern Italy," Agricultural Water Management, Elsevier, vol. 49(3), pages 185-196, August.
- G. Kapetanaki & C. Rosenzweig, 1997. "Impact of climate change on maize yield in central and northern Greece: A simulation study with CERES-Maize," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 1(3), pages 251-271, September.
- Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
- Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
- Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
- Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
- Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
- Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
- Bai, Yu & Gao, Jinhua, 2021. "Optimization of the nitrogen fertilizer schedule of maize under drip irrigation in Jilin, China, based on DSSAT and GA," Agricultural Water Management, Elsevier, vol. 244(C).
- Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
- Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
- Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
- Linker, Raphael, 2020. "Unified framework for model-based optimal allocation of crop areas and water," Agricultural Water Management, Elsevier, vol. 228(C).
- Wang, Yue & Jiang, Kongtao & Shen, Hongzheng & Wang, Nan & Liu, Ruizhe & Wu, Jiujiang & Ma, Xiaoyi, 2023. "Decision-making method for maize irrigation in supplementary irrigation areas based on the DSSAT model and a genetic algorithm," Agricultural Water Management, Elsevier, vol. 280(C).
- Kelly, T.D. & Foster, T., 2021. "AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling," Agricultural Water Management, Elsevier, vol. 254(C).
- Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
- Dahri, Shahzad Hussain & Shaikh, Irfan Ahmed & Talpur, Mashooque Ali & Mangrio, Munir Ahmed & Dahri, Zakir Hussain & Hoogenboom, Gerrit & Knox, Jerry W., 2024. "Modelling the impacts of climate change on the sustainability of rainfed and irrigated maize in Pakistan," Agricultural Water Management, Elsevier, vol. 296(C).
- Singh, Sukhbir & Boote, Kenneth J. & Angadi, Sangamesh V. & Grover, Kulbhushan K., 2017. "Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model," Agricultural Water Management, Elsevier, vol. 185(C), pages 137-144.
- Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
- Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
- Seckler, D. & Molden, D. & Sakthivadivel, R., 2003. "The concept of efficiency in water resources management and policy," IWMI Books, Reports H032634, International Water Management Institute.
- Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
- Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
- Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
- Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
- Bingfang Wu & Hongwei Zeng & Nana Yan & Miao Zhang, 2018. "Approach for Estimating Available Consumable Water for Human Activities in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2353-2368, May.
- Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
- Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014.
"Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data,"
Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
- Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Discussion Papers Series 518, School of Economics, University of Queensland, Australia.
- Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
- Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
- Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
- Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
- Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.
- Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
- Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
- Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
- Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
More about this item
Keywords
DSSAT model; Optimal irrigation schedule; Maize; Potentially reduced water amount;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:37-45. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.