IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v117y2013icp62-69.html
   My bibliography  Save this article

Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density

Author

Listed:
  • Jahanzad, E.
  • Jorat, M.
  • Moghadam, H.
  • Sadeghpour, A.
  • Chaichi, M.-R.
  • Dashtaki, M.

Abstract

Increasing scarcity of water for irrigation is one of the major challenges for forage producers in all arid and semi-arid regions. Selecting drought tolerant forage species such as sorghum (Sorghum spp. L.) over corn, as a common forage crop, could be a viable option to cope with the limited available water for irrigation and increasing the productivity in such climates. A two-year experiment was conducted during the 2009 and 2010 growing seasons to determine if limited irrigation regimes and different plant densities may produce high-yielding forage sorghum with acceptable forage quality. The experiment was arranged in a three-replicated split-plot factorial design with three irrigation regimes including optimum irrigation (when evaporation reached 70mm, using evaporation pan class “A”), moderate drought stress (100mm), and severe drought stress (130mm) as main plots. A common sorghum cultivar (Speedfeed) and a newly released cultivar (Pegah) were factorially combined with three plant densities (150,000, 200,000, and 250,000plantsha−1), as sub-plots. Results of this study indicated that forage dry matter and forage quality parameters were significantly influenced by irrigation regimes, plant densities, and cultivars. Increasing water stress from optimum irrigation (Ir70) to moderate (Ir100) and low irrigation (Ir130) resulted in 20 and 34% less forage dry matter yield. Protein yield was also lower when applying moderate and severe drought stress than with the optimum irrigation regime, whereas some forage quality parameters including crude protein, dry matter digestibility, water soluble carbohydrates, dry matter intake, relative feed value, and net energy for lactation improved when limited irrigation was imposed. Highest protein yield (1688kgha−1) was obtained from the combination of optimum irrigation regime and lowest plant density, whereas forage produced in moderate stress and low plant density was richer in relative feed value. Speedfeed outyielded Pegah cultivar and produced higher protein yield.

Suggested Citation

  • Jahanzad, E. & Jorat, M. & Moghadam, H. & Sadeghpour, A. & Chaichi, M.-R. & Dashtaki, M., 2013. "Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density," Agricultural Water Management, Elsevier, vol. 117(C), pages 62-69.
  • Handle: RePEc:eee:agiwat:v:117:y:2013:i:c:p:62-69
    DOI: 10.1016/j.agwat.2012.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    2. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
    3. Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Sepideh Jafarian & Mohammad Chaichi & Hosein Moghaddam, 2015. "Surfactant and Limited Irrigation Effects on Forage and Seed Production and Water Use Efficiency in Alfalfa (Medicago sativa L.)," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(9), pages 1-56, August.
    5. Liu, Xiaogang & Li, Fusheng & Zhang, Yan & Yang, Qiliang, 2016. "Effects of deficit irrigation on yield and nutritional quality of Arabica coffee (Coffea arabica) under different N rates in dry and hot region of southwest China," Agricultural Water Management, Elsevier, vol. 172(C), pages 1-8.
    6. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    2. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    3. Wang, Daobo & Li, Fusheng & Nong, Mengling, 2017. "Response of yield and water use efficiency to different irrigation levels at different growth stages of Kenaf and crop water production function," Agricultural Water Management, Elsevier, vol. 179(C), pages 177-183.
    4. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    5. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    6. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    7. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2016. "Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant," Agricultural Water Management, Elsevier, vol. 164(P2), pages 331-339.
    8. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    9. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    11. Vieira Junior, Nilson & Carcedo, Ana Julia Paula & Min, Doohong & Diatta, Andre Amakobo & Araya, Alemie & Prasad, P.V. Vara & Diallo, Amadiane & Ciampitti, Ignacio, 2023. "Management adaptations for water-limited pearl millet systems in Senegal," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    14. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
    16. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    17. Ratchaneewan Chuchird & Nophea Sasaki & Issei Abe, 2017. "Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    18. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    19. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    20. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:117:y:2013:i:c:p:62-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.