IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip2p331-339.html
   My bibliography  Save this article

Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant

Author

Listed:
  • Daneshnia, F.
  • Amini, A.
  • Chaichi, M.R.

Abstract

The presented study is a comprehensive report on the qualitative configuration of crop quality, essential oil percentage and oil yield in berseem clover and basil under limited irrigation and additive intercropping systems using a nonionic surfactant. This experimental field study was conducted in the 2012–2014 growing seasons to identify the best combination of irrigation level, sowing pattern and water treatment for basil oil content and yield, and berseem clover with an acceptable forage quality for arid and semi-arid regions. The limited irrigation treatments comprised of full irrigation, I100 (100%), moderately limited, I75 (75%), and severely limited, I50 (50%). The planting systems of sole berseem clover and sole basil culture, along with the additive intercropping of berseem clover and 50% basil, were assigned to the plots under water treatment alone (control) and water with surfactant setups. Results show that, as the severity of drought stress increased (I50), dry matter digestibility of berseem clover in I50 with surfactant decreased moderately when compared to I50 irrigation alone. Crude protein, water-soluble carbohydrates and neutral detergent fiber percentages followed increasing trends in limited irrigation systems in water treatments both with and without surfactant. All forage quality traits of berseem clover were improved in the additive intercropping treatment (legume–basil mixture). Application of surfactant was favorable to a sole basil culture, enhancing the essential oil percentage as well as oil yield under a deficit irrigation treatment. The highest essential oil yield (11.45kgha−1) was achieved in the I75 with surfactant treatment. Additionally, the basil essential oil yield increased during sole cropping in comparison with the mixed cropping system. The water use efficiency in the intercropping system across surfactants in arid and semi-arid regions was improved during the warm season when soil water availability decreased due to the high temperature and low precipitation.

Suggested Citation

  • Daneshnia, F. & Amini, A. & Chaichi, M.R., 2016. "Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant," Agricultural Water Management, Elsevier, vol. 164(P2), pages 331-339.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:331-339
    DOI: 10.1016/j.agwat.2015.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    2. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
    3. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F Daneshnia & MR Chaichi, 2018. "Field Treatment Effects on Seed Germination and Early Growth Traits of Berseem Clover under Salinity Stress Conditions," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 2(1), pages 142-155, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    2. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    3. Wang, Daobo & Li, Fusheng & Nong, Mengling, 2017. "Response of yield and water use efficiency to different irrigation levels at different growth stages of Kenaf and crop water production function," Agricultural Water Management, Elsevier, vol. 179(C), pages 177-183.
    4. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    6. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    8. Muhammad Usman & Talha Mahmood & Christopher Conrad & Habib Ullah Bodla, 2020. "Remote Sensing and Modelling Based Framework for Valuing Irrigation System Efficiency and Steering Indicators of Consumptive Water Use in an Irrigated Region," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    9. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.
    10. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    11. Ratchaneewan Chuchird & Nophea Sasaki & Issei Abe, 2017. "Influencing Factors of the Adoption of Agricultural Irrigation Technologies and the Economic Returns: A Case Study in Chaiyaphum Province, Thailand," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    12. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    13. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    14. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    15. DeJonge, Kendall C. & Kaleita, Amy L. & Thorp, Kelly R., 2007. "Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 99-109, August.
    16. Debarati Datta & Arvind Kumar Singh & Girindrani Dutta & Nurnabi Meherul Alam & Dhananjay Barman & Ranjan Kumar Naik & Sourav Ghosh & Gouranga Kar, 2024. "Optimization of Deficit Irrigation Water Usage for Maximisation of Jute Fibre Yield Using the Soil-water-crop Model in a Sub-tropical Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 4955-4968, October.
    17. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    18. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    19. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Eiasu, B.K. & Steyn, J.M. & Soundy, P., 2009. "Rose-scented geranium (Pelargonium capitatumxP. radens) growth and essential oil yield response to different soil water depletion regimes," Agricultural Water Management, Elsevier, vol. 96(6), pages 991-1000, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:331-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.