IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v188y2017icp115-125.html
   My bibliography  Save this article

Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment

Author

Listed:
  • Greaves, Geneille E.
  • Wang, Yu-Min

Abstract

The enhancement of common irrigation practices can substantially contribute to sustainable water development. This study was conducted to determine an effective water application depth for improving agricultural water use (irrigation water use efficiency (IWUE) and water use efficiency (WUE)) in surface irrigated corn production, and to determine an effective rooting depth for irrigation planning in a tropical region. The effect of five irrigation treatments on corn growth, yield and root extraction patterns were investigated and assessed. The treatments included a full irrigation treatment with a water application depth of 6cm (T5), and four deficit irrigation (DI) treatments with depths of: 5cm (T4), 4cm (T3), 3cm (T2) and 2cm (T1). Irrigation water was applied to all treatments when soil moisture for T5 was depleted by 40%. Seasonal water applied varied from 235 to 555mm while the seasonal crop evapotranspiration ranged from 331 to 605mm. Results revealed all treatments sustained varying levels of water stress except for T5. Corn grain yield ranged from 567.13gm−2 in T1 to 911.26gm−2 in T5, a significant increase (P<0.05) of 37.7%. Similarly, there were significant differences in biomass ranging from 1012.64 to 1774.05gm−2 and leaf area index ranging from 3.99 to 5.83m2m−2. The highest WUE of 1.79kgm−3 and IWUE of 2.41kgm−3 were observed for T3 and T5, respectively, whereas the lowest was found in T5 with respective values of 1.52 and 1.63kgm−3. Results indicate that it is possible to implement DI strategies for reducing agricultural water use without significant impact on grain yield. Treatments T3 and T4 offer water savings of 29% and 14% respectively in irrigation application with a 10.5% and 8.6% insignificant reduction in grain yield relative to T5. Further, agricultural water productivity can be enhanced by employing a rooting depth of 60cm when planning irrigation application amount.

Suggested Citation

  • Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
  • Handle: RePEc:eee:agiwat:v:188:y:2017:i:c:p:115-125
    DOI: 10.1016/j.agwat.2017.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417301506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    2. Stone, L. R. & Schlegel, A. J. & Gwin, R. E. & Khan, A. H., 1996. "Response of corn, grain sorghum, and sunflower to irrigation in the High Plains of Kansas," Agricultural Water Management, Elsevier, vol. 30(3), pages 251-259, May.
    3. Liu, W. Z. & Hunsaker, D. J. & Li, Y. S. & Xie, X. Q. & Wall, G. W., 2002. "Interrelations of yield, evapotranspiration, and water use efficiency from marginal analysis of water production functions," Agricultural Water Management, Elsevier, vol. 56(2), pages 143-151, July.
    4. Ferreira, T.C. & Goncalves, D.A., 2007. "Crop-yield/water-use production functions of potatoes (Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in a hot, dry climate," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 45-55, May.
    5. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    6. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    7. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    8. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    9. Karam, Fadi & Breidy, Joelle & Stephan, Chafic & Rouphael, Joe, 2003. "Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon," Agricultural Water Management, Elsevier, vol. 63(2), pages 125-137, December.
    10. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    11. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    12. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    13. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    14. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingtao Qin & Xiaosen Wang & Xichao Fan & Mingliang Jiang & Mouchao Lv, 2022. "Whether Increasing Maize Planting Density Increases the Total Water Use Depends on Soil Water in the 0–60 cm Soil Layer in the North China Plain," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    2. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    3. Agossou Gadedjisso-Tossou & Tamara Avellán & Niels Schütze, 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa," Resources, MDPI, vol. 8(4), pages 1-11, November.
    4. Wang, Zeyi & Yu, Shouchao & Zhang, Hengjia & Lei, Lian & Liang, Chao & Chen, Lili & Su, Dandan & Li, Xuan, 2023. "Deficit mulched drip irrigation improves yield, quality, and water use efficiency of watermelon in a desert oasis region," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    6. Wang, Zeyi & Zhang, Hengjia & Wang, Yingying & Wang, Yong & Lei, Lian & Liang, Chao & Wang, Yucai, 2023. "Deficit irrigation decision-making of indigowoad root based on a model coupling fuzzy theory and grey relational analysis," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Marilyn S. Painagan & Victor B. Ella, 2022. "Modeling the Impact of Deficit Irrigation on Corn Production," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    9. Zeng, Yuan-Fu & Chen, Ching-Tien & Lin, Gwo-Fong, 2023. "Practical application of an intelligent irrigation system to rice paddies in Taiwan," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    3. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    4. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    5. Wang, Feng & Xie, Ruizhi & Ming, Bo & Wang, Keru & Hou, Peng & Chen, Jianglu & Liu, Guangzhou & Zhang, Guoqiang & Xue, Jun & Li, Shaokun, 2021. "Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    8. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    9. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    10. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    11. Couto, A. & Ruiz Padín, A. & Reinoso, B., 2013. "Comparative yield and water use efficiency of two maize hybrids differing in maturity under solid set sprinkler and two different lateral spacing drip irrigation systems in León, Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 77-84.
    12. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    13. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    14. Rashki, Paria & piri, halimeh & Khamari, Eisa, 2022. "Determining the production function and optimal irrigation depth of Roselle in deficit irrigation conditions and using potassium fertilizer," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    16. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    17. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    18. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    20. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:188:y:2017:i:c:p:115-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.