IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i3d10.1007_s10845-020-01687-7.html
   My bibliography  Save this article

Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification

Author

Listed:
  • Chia-Yu Hsu

    (National Taipei University of Technology)

  • Ju-Chien Chien

    (National Tsing Hua University
    Artificial Intelligence for Intelligent Manufacturing Systems (AIMS) Research Center, Ministry of Science & Technology)

Abstract

Wafer bin maps (WBM) provides crucial information regarding process abnormalities and facilitate the diagnosis of low-yield problems in semiconductor manufacturing. Most studies of WBM classification and analysis apply a statistical-based method or machine learning method operating on raw wafer data and extracted features. With increasing WBM pattern diversity and complexity, the useful features for effective WBM recognition are highly dependent on domain knowledge. This study proposes an ensemble convolutional neural network (ECNN) framework for WBM pattern classification, in which a weighted majority function is adopted to select higher weights for the base classifiers that have higher predictive performance. An industrial WBM dataset (namely, WM-811K) from a wafer fabrication process was used to demonstrate the effectiveness of the proposed ECNN framework. The proposed ECNN has superior performance in terms of precision, recall, F1 and other conventional machine learning classifiers such as linear regression, random forest, gradient boosting machine, and artificial neural network. The experimental results show that the proposed ECNN framework is able to identify common WBM defect patterns effectively.

Suggested Citation

  • Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01687-7
    DOI: 10.1007/s10845-020-01687-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01687-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01687-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hui Lin & Bin Li & Xinggang Wang & Yufeng Shu & Shuanglong Niu, 2019. "Automated defect inspection of LED chip using deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2525-2534, August.
    2. Cheng Hao Jin & Hyun-Jin Kim & Yongjun Piao & Meijing Li & Minghao Piao, 2020. "Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1861-1875, December.
    3. Eryun Liu & Kangping Chen & Zhiyu Xiang & Jun Zhang, 2020. "Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1037-1049, April.
    4. Yuan, Tao & Kuo, Way, 2008. "Spatial defect pattern recognition on semiconductor wafers using model-based clustering and Bayesian inference," European Journal of Operational Research, Elsevier, vol. 190(1), pages 228-240, October.
    5. Hsu, Shao-Chung & Chien, Chen-Fu, 2007. "Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 107(1), pages 88-103, May.
    6. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    7. Hwang, Jung Yoon & Kuo, Way, 2007. "Model-based clustering for integrated circuit yield enhancement," European Journal of Operational Research, Elsevier, vol. 178(1), pages 143-153, April.
    8. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    9. Carlos Gonzalez-Val & Adrian Pallas & Veronica Panadeiro & Alvaro Rodriguez, 2020. "A convolutional approach to quality monitoring for laser manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 789-795, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijie Wang & Haiyong Chen & Kun Liu & Ying Zhou & Huichuan Feng, 2023. "Meta-FSDet: a meta-learning based detector for few-shot defects of photovoltaic modules," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3413-3427, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Huang & Ben-wu Wang & Qi-peng Li & Jun Zou, 2023. "Texture surface defect detection of plastic relays with an enhanced feature pyramid network," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1409-1425, March.
    2. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    3. Chengjun Xu & Guobin Zhu, 2021. "Intelligent manufacturing Lie Group Machine Learning: real-time and efficient inspection system based on fog computing," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 237-249, January.
    4. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    5. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    6. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    7. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    8. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.
    9. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    10. Aidong Chen & Xiang Li & Hongyuan Jing & Chen Hong & Minghai Li, 2023. "Anomaly Detection Algorithm for Photovoltaic Cells Based on Lightweight Multi-Channel Spatial Attention Mechanism," Energies, MDPI, vol. 16(4), pages 1-15, February.
    11. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    12. Bikash Koli Dey & Hyesung Seok, 2024. "Intelligent inventory management with autonomation and service strategy," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 307-330, January.
    13. Cheng Hao Jin & Hyun-Jin Kim & Yongjun Piao & Meijing Li & Minghao Piao, 2020. "Wafer map defect pattern classification based on convolutional neural network features and error-correcting output codes," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1861-1875, December.
    14. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    15. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    16. Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
    17. Ammar H. Elsheikh & Taher A. Shehabeldeen & Jianxin Zhou & Ezzat Showaib & Mohamed Abd Elaziz, 2021. "Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1377-1388, June.
    18. Fan, Shu-Kai S. & Chiu, Shang-Hao, 2024. "A new ViT-Based augmentation framework for wafer map defect classification to enhance the resilience of semiconductor supply chains," International Journal of Production Economics, Elsevier, vol. 273(C).
    19. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    20. Chen-Fu Chien & Hsin-Jung Wu, 2024. "Integrated circuit probe card troubleshooting based on rough set theory for advanced quality control and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 275-287, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:3:d:10.1007_s10845-020-01687-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.