IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01878-w.html
   My bibliography  Save this article

Automated surface defect detection framework using machine vision and convolutional neural networks

Author

Listed:
  • Swarit Anand Singh

    (Indian Institute of Technology Jodhpur)

  • K. A. Desai

    (Indian Institute of Technology Jodhpur)

Abstract

Machine vision-based inspection technologies are gaining considerable importance for automated monitoring and quality control of manufactured products in recent years due to the advent of Industry 4.0. The involvement of advanced deep learning methods is a significant factor contributing to the advent of robust vision-based solutions for improving inspection accuracy at a significantly lower cost in manufacturing industries. The requirement of computational resources and large training datasets hinders the deployment of these solutions to manufacturing shop floors. The present research work develops an image-based framework considering pre-trained Convolutional Neural Network (CNN), ResNet-101 to detect surface defects with the minimum training datasets and computational requirements. The outcomes of the proposed framework are substantiated through a case study of detecting commonly observed surface defects during the centerless grinding of tapered rollers. The image datasets consisting of standard tapered rollers and three common defect classes are captured and enriched further with the help of the data augmentation technique. The present work employs ResNet-101 for feature extraction combined with and multi-class Support Vector Machine (SVM) as a classifier to detect defective images. The effects of the feature extraction layer (fc1000) and pooling layer (pool5) activation are explored to achieve the desired prediction abilities. The testing trials demonstrate that the proposed framework effectively performs image classification, achieving 100% precision for the ‘Good’ class components. The study showed that the proposed approach could overcome the requirements of large training datasets and higher computational power for deep learning models. The proposed system can be of significant importance for Micro, Small, and Medium Enterprises (MSMEs) and Small and Medium-sized Enterprises (SMEs) as an alternative to conventional labor-intensive manual inspection techniques.

Suggested Citation

  • Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01878-w
    DOI: 10.1007/s10845-021-01878-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01878-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01878-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    2. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    3. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    4. Hui Lin & Bin Li & Xinggang Wang & Yufeng Shu & Shuanglong Niu, 2019. "Automated defect inspection of LED chip using deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2525-2534, August.
    5. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    6. Chung-Feng Jeffrey Kuo & Chun-Han Tsai & Wei-Ren Wang & Han-Cheng Wu, 2019. "Automatic marking point positioning of printed circuit boards based on template matching technique," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 671-685, February.
    7. Sebastian Meister & Mahdieu A. M. Wermes & Jan Stüve & Roger M. Groves, 2021. "Review of image segmentation techniques for layup defect detection in the Automated Fiber Placement process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2099-2119, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    2. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    3. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    4. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    5. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    6. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    7. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    8. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    9. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    10. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    11. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    12. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    13. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    14. Emmanuel Ekene Okere & Ebrahiema Arendse & Alemayehu Ambaw Tsige & Willem Jacobus Perold & Umezuruike Linus Opara, 2022. "Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review," Agriculture, MDPI, vol. 12(12), pages 1-25, November.
    15. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    16. Bikash Koli Dey & Hyesung Seok, 2024. "Intelligent inventory management with autonomation and service strategy," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 307-330, January.
    17. Pompeu Casanovas & Louis de Koker & Mustafa Hashmi, 2022. "Law, Socio-Legal Governance, the Internet of Things, and Industry 4.0: A Middle-Out/Inside-Out Approach," J, MDPI, vol. 5(1), pages 1-28, January.
    18. Anna Kwiotkowska & Radosław Wolniak & Bożena Gajdzik & Magdalena Gębczyńska, 2022. "Configurational Paths of Leadership Competency Shortages and 4.0 Leadership Effectiveness: An fs/QCA Study," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    19. Yun Peng & Shenyi Zhao & Jizhan Liu, 2021. "Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine," Agriculture, MDPI, vol. 11(9), pages 1-16, September.
    20. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01878-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.