IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01494-9.html
   My bibliography  Save this article

Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing

Author

Listed:
  • Eryun Liu

    (Zhejiang University)

  • Kangping Chen

    (Zhejiang University)

  • Zhiyu Xiang

    (Zhejiang University)

  • Jun Zhang

    (Tencent AI Healthcare)

Abstract

The inspection of conductive particles after Anisotropic Conductive Film (ACF) bonding is a common and crucial step in the TFT-LCD manufacturing process since the number of high-quality conductive particles is a key indicator of ACF bonding quality. However, manual inspection under microscope is a time-consuming, tedious, and error-prone. Therefore, there is an urgent demand in industry for the automatic conductive particle inspection system. It is challenging for automatic conductive particle quality inspection due to the existence of complex background noise and diversified particle appearance, including shape, size, clustering and overlapping, etc. As a result, it lacks an effective automatic detection method to handle all the complex particle patterns. In this paper, we propose a U-shaped deep residual neural network (i.e., U-ResNet), which can learn features of particle from massively labeled data. The experimental results show that the proposed method achieves high detection accuracy and recall rate, which exceedingly outperforms the previous work. Also, our system is very efficient and can work in real time.

Suggested Citation

  • Eryun Liu & Kangping Chen & Zhiyu Xiang & Jun Zhang, 2020. "Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1037-1049, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01494-9
    DOI: 10.1007/s10845-019-01494-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01494-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01494-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    2. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01494-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.