IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i8d10.1007_s10845-022-02024-w.html
   My bibliography  Save this article

Conductive particle detection via efficient encoder–decoder network

Author

Listed:
  • Yuanyuan Wang

    (Zhengzhou University
    Henan University of Engineering)

  • Ling Ma

    (Zhengzhou University)

  • Lihua Jian

    (Zhengzhou University)

  • Huiqin Jiang

    (Zhengzhou University)

Abstract

Particle detection aims to accurately locate and count valid particles in pad images to ensure the performance of electrical connections in the chip-on-glass (COG) process. However, existing methods fail to achieve both high detection accuracy and inference efficiency in real applications. To solve this problem, we design a computation-efficient particle detection network (PAD-Net) with an encoder–decoder architecture, making a good trade-off between inference efficiency and accuracy. In the encoder part, MobileNetV3 is tailored to greatly reduce parameters at a little cost of accuracy drop. And the decoder part is designed by using the light-weight RefineNet, which can further boost particle detection performance. Besides, the proposed network adopts the adaptive attention loss (termed AAL), which improves the detection accuracy with a negligible increase in computation cost. Finally, we employ a knowledge distillation strategy to further enhance the final detection performance without increasing the parameters and floating-point operations (FLOPs) of PAD-Net. Experimental results on the real datasets demonstrate that our methods can achieve high-accuracy and real-time detection performance on valid particles compared with the state-of-the-art methods.

Suggested Citation

  • Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02024-w
    DOI: 10.1007/s10845-022-02024-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02024-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02024-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruizhen Liu & Zhiyi Sun & Anhong Wang & Kai Yang & Yin Wang & Qianlai Sun, 2020. "Real-time defect detection network for polarizer based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1813-1823, December.
    2. Eryun Liu & Kangping Chen & Zhiyu Xiang & Jun Zhang, 2020. "Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1037-1049, April.
    3. Maike Lorena Stern & Martin Schellenberger, 2021. "Fully convolutional networks for chip-wise defect detection employing photoluminescence images," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 113-126, January.
    4. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    5. Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    2. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    3. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    4. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    5. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    6. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    7. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    8. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    9. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    10. José M. Navarro-Jiménez & José V. Aguado & Grégoire Bazin & Vicente Albero & Domenico Borzacchiello, 2023. "Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2345-2358, June.
    11. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.
    12. Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
    13. Shuai Ma & Kechen Song & Menghui Niu & Hongkun Tian & Yunhui Yan, 2024. "Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 367-386, January.
    14. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    15. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    16. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    17. Seunghwan Jung & Minseok Kim & Eunkyeong Kim & Baekcheon Kim & Jinyong Kim & Kyeong-Hee Cho & Hyang-A Park & Sungshin Kim, 2024. "The Early Detection of Faults for Lithium-Ion Batteries in Energy Storage Systems Using Independent Component Analysis with Mahalanobis Distance," Energies, MDPI, vol. 17(2), pages 1-23, January.
    18. Zhuxi Ma & Yibo Li & Minghui Huang & Qianbin Huang & Jie Cheng & Si Tang, 2023. "Automated real-time detection of surface defects in manufacturing processes of aluminum alloy strip using a lightweight network architecture," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2431-2447, June.
    19. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    20. Simon Müller & Christina Sauter & Ramesh Shunmugasundaram & Nils Wenzler & Vincent Andrade & Francesco Carlo & Ender Konukoglu & Vanessa Wood, 2021. "Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:8:d:10.1007_s10845-022-02024-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.