IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3749-d1134795.html
   My bibliography  Save this article

A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images

Author

Listed:
  • Chiwu Bu

    (School of Light Industry, Harbin University of Commerce, Harbin 150028, China)

  • Tao Liu

    (School of Light Industry, Harbin University of Commerce, Harbin 150028, China)

  • Tao Wang

    (Intelligent Manufacturing Engineering Department, Zibo Technician College, Zibo 255000, China)

  • Hai Zhang

    (Centre for Composite Materials and Structures (CCMS), Harbin Institute of Technology, Harbin 150001, China)

  • Stefano Sfarra

    (Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, 67100 L’Aquila, AQ, Italy)

Abstract

Photovoltaic (PV) cells are a major part of solar power stations, and the inevitable faults of a cell affect its work efficiency and the safety of the power station. During manufacturing and service, it is necessary to carry out fault detection and classification. A convolutional-neural-network (CNN)-architecture-based PV cell fault classification method is proposed and trained on an infrared image data set. In order to overcome the problem of the original dataset’s scarcity, an offline data augmentation method is adopted to improve the generalization ability of the network. During the experiment, the effectiveness of the proposed model is evaluated by quantifying the obtained results with four deep learning models through evaluation indicators. The fault classification accuracy of the CNN model proposed here has been drawn by the experiment and reaches 97.42%, and it is superior to that of the models of AlexNet, VGG 16, ResNet 18 and existing models. In addition, the proposed model has faster calculation, prediction speed and the highest accuracy. This method can well-identify and classify PV cell faults and has high application potential in automatic fault identification and classification.

Suggested Citation

  • Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3749-:d:1134795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    2. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    3. Meng-Hui Wang & Zong-Han Lin & Shiue-Der Lu, 2022. "A Fault Detection Method Based on CNN and Symmetrized Dot Pattern for PV Modules," Energies, MDPI, vol. 15(17), pages 1-17, September.
    4. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    5. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    6. Wang, Youyang & Li, Liying & Sun, Yifan & Xu, Jinjia & Jia, Yun & Hong, Jianyu & Hu, Xiaobo & Weng, Guoen & Luo, Xianjia & Chen, Shaoqiang & Zhu, Ziqiang & Chu, Junhao & Akiyama, Hidefumi, 2021. "Adaptive automatic solar cell defect detection and classification based on absolute electroluminescence imaging," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    4. Zhang, Jinxia & Chen, Xinyi & Wei, Haikun & Zhang, Kanjian, 2024. "A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation," Applied Energy, Elsevier, vol. 355(C).
    5. Zhenying Xu & Ziqian Wu & Wei Fan, 2021. "Improved SSD-assisted algorithm for surface defect detection of electromagnetic luminescence," Journal of Risk and Reliability, , vol. 235(5), pages 761-768, October.
    6. Aidong Chen & Xiang Li & Hongyuan Jing & Chen Hong & Minghai Li, 2023. "Anomaly Detection Algorithm for Photovoltaic Cells Based on Lightweight Multi-Channel Spatial Attention Mechanism," Energies, MDPI, vol. 16(4), pages 1-15, February.
    7. Shijie Wang & Haiyong Chen & Kun Liu & Ying Zhou & Huichuan Feng, 2023. "Meta-FSDet: a meta-learning based detector for few-shot defects of photovoltaic modules," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3413-3427, December.
    8. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    9. Gianfranco Di Lorenzo & Erika Stracqualursi & Rodolfo Araneo, 2022. "The Journey Towards the Energy Transition: Perspectives from the International Conference on Environment and Electrical Engineering (EEEIC)," Energies, MDPI, vol. 15(18), pages 1-5, September.
    10. Pratt, Lawrence & Govender, Devashen & Klein, Richard, 2021. "Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation," Renewable Energy, Elsevier, vol. 178(C), pages 1211-1222.
    11. Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
    12. Shirzad, Hossein & Barati, Ali Akbar & Ehteshammajd, Shaghayegh & Goli, Imaneh & Siamian, Narges & Moghaddam, Saghi Movahhed & Pour, Mahdad & Tan, Rong & Janečková, Kristina & Sklenička, Petr & Azadi,, 2022. "Agricultural land tenure system in Iran: An overview," Land Use Policy, Elsevier, vol. 123(C).
    13. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    14. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    15. Dhimish, Mahmoud & Ahmad, Ameer & Tyrrell, Andy M., 2022. "Inequalities in photovoltaics modules reliability: From packaging to PV installation site," Renewable Energy, Elsevier, vol. 192(C), pages 805-814.
    16. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    17. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    18. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    19. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    20. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3749-:d:1134795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.