IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001076.html
   My bibliography  Save this article

Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives

Author

Listed:
  • T Déirdre Hollingsworth
  • Don Klinkenberg
  • Hans Heesterbeek
  • Roy M Anderson

Abstract

Mitigation of a severe influenza pandemic can be achieved using a range of interventions to reduce transmission. Interventions can reduce the impact of an outbreak and buy time until vaccines are developed, but they may have high social and economic costs. The non-linear effect on the epidemic dynamics means that suitable strategies crucially depend on the precise aim of the intervention. National pandemic influenza plans rarely contain clear statements of policy objectives or prioritization of potentially conflicting aims, such as minimizing mortality (depending on the severity of a pandemic) or peak prevalence or limiting the socio-economic burden of contact-reducing interventions. We use epidemiological models of influenza A to investigate how contact-reducing interventions and availability of antiviral drugs or pre-pandemic vaccines contribute to achieving particular policy objectives. Our analyses show that the ideal strategy depends on the aim of an intervention and that the achievement of one policy objective may preclude success with others, e.g., constraining peak demand for public health resources may lengthen the duration of the epidemic and hence its economic and social impact. Constraining total case numbers can be achieved by a range of strategies, whereas strategies which additionally constrain peak demand for services require a more sophisticated intervention. If, for example, there are multiple objectives which must be achieved prior to the availability of a pandemic vaccine (i.e., a time-limited intervention), our analysis shows that interventions should be implemented several weeks into the epidemic, not at the very start. This observation is shown to be robust across a range of constraints and for uncertainty in estimates of both R0 and the timing of vaccine availability. These analyses highlight the need for more precise statements of policy objectives and their assumed consequences when planning and implementing strategies to mitigate the impact of an influenza pandemic.Author Summary: In the event of an influenza pandemic which has high mortality and the potential to spread rapidly, such as the 1918–19 pandemic, there are a number of non-pharmaceutical public health control options available to reduce transmission in the community and mitigate the effects of the pandemic. These include reducing social contacts by closing schools or postponing public events, and encouraging hand washing and the use of masks. These interventions will not only have a non-intuitive impact on the epidemic dynamics, but they will also have direct and indirect social and economic costs, which mean that governments will only want to use them for a limited amount of time. We use simulations to show that limited-time interventions that achieve one aim, e.g., contain the total number of cases below some maximum number of treatments available, are not the same as those that achieve another, e.g., minimize peak demand for health care services. If multiple aims are defined simultaneously, we often see that the optimal intervention need not commence immediately but can begin a few weeks into the epidemic. Our research demonstrates the importance of tailoring pandemic plans to defined policy targets with some flexibility to allow for uncertainty in the characteristics of the pandemic.

Suggested Citation

  • T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
  • Handle: RePEc:plo:pcbi00:1001076
    DOI: 10.1371/journal.pcbi.1001076
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001076
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001076&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph T Wu & Gabriel M Leung & Marc Lipsitch & Ben S Cooper & Steven Riley, 2009. "Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy," PLOS Medicine, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    3. Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    4. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    5. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    6. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basco, Sergi & Domènech, Jordi & Rosés, Joan R., 2021. "The redistributive effects of pandemics: Evidence on the Spanish flu," World Development, Elsevier, vol. 141(C).
    2. Claudio Neidhöfer & Guido Neidhöfer, 2020. "The Effectiveness of School Closures and Other Pre-Lockdown COVID-19 Mitigation Strategies in Argentina, Italy, and South Korea," CEDLAS, Working Papers 0266, CEDLAS, Universidad Nacional de La Plata.
    3. Francesco Di Lauro & István Z Kiss & Joel C Miller, 2021. "Optimal timing of one-shot interventions for epidemic control," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-24, March.
    4. Basco, Sergi & Domènech, Jordi & Rosés, Joan R., 2021. "The redistributive effects of pandemics: Evidence on the Spanish flu," World Development, Elsevier, vol. 141(C).
    5. Amit Summan & Arindam Nandi, 2022. "Timing of non-pharmaceutical interventions to mitigate COVID-19 transmission and their effects on mobility: a cross-country analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 105-117, February.
    6. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    7. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Hasnan Baber, 2021. "Efficacy of COVID-19 screening system and customer satisfaction in banks: moderating role of the perceived threat and health risk," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 26(4), pages 295-304, December.
    9. Pierre-Alexandre Bliman & Michel Duprez & Yannick Privat & Nicolas Vauchelet, 2021. "Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 408-436, May.
    10. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    11. Silva, Maria Laura & Perrier, Lionel & Cohen, Jean Marie & Paget, William John & Mosnier, Anne & Späth, Hans Martin, 2015. "A literature review to identify factors that determine policies for influenza vaccination," Health Policy, Elsevier, vol. 119(6), pages 697-708.
    12. Esra Ozdenerol & Rebecca Michelle Bingham-Byrne & Jacob Seboly, 2023. "Female Leadership during COVID-19: The Effectiveness of Diverse Approaches towards Mitigation Management during a Pandemic," IJERPH, MDPI, vol. 20(21), pages 1-36, November.
    13. Po Yang & Jun Qi & Shuhao Zhang & Xulong Wang & Gaoshan Bi & Yun Yang & Bin Sheng & Geng Yang, 2020. "Feasibility study of mitigation and suppression strategies for controlling COVID-19 outbreaks in London and Wuhan," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    14. Hensel, Lukas & Witte, Marc & Caria, A. Stefano & Fetzer, Thiemo & Fiorin, Stefano & Götz, Friedrich M. & Gomez, Margarita & Haushofer, Johannes & Ivchenko, Andriy & Kraft-Todd, Gordon & Reutskaja, El, 2022. "Global Behaviors, Perceptions, and the Emergence of Social Norms at the Onset of the COVID-19 Pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 473-496.
    15. Brandon Lieberthal & Allison M Gardner, 2021. "Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
    16. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    17. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    18. Andy Dobson & Cristiano Ricci & Raouf Boucekkine & Giorgio Fabbri & Ted Loch-Temzelides & Mercedes Pascual, 2023. "Balancing economic and epidemiological interventions in the early stages of pathogen emergence," Post-Print hal-04150117, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    2. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    3. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    4. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    5. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    6. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    7. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    8. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    9. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    10. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    11. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    12. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    13. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    14. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    15. Christian Thiemann & Fabian Theis & Daniel Grady & Rafael Brune & Dirk Brockmann, 2010. "The Structure of Borders in a Small World," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
    16. Heinrich, Torsten, 2021. "Epidemics in modern economies," MPRA Paper 107578, University Library of Munich, Germany.
    17. Dionne M. Aleman & Theodorus G. Wibisono & Brian Schwartz, 2011. "A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak," Interfaces, INFORMS, vol. 41(3), pages 301-315, June.
    18. Catherine Z. Worsnop, 2017. "Domestic politics and the WHO’s International Health Regulations: Explaining the use of trade and travel barriers during disease outbreaks," The Review of International Organizations, Springer, vol. 12(3), pages 365-395, September.
    19. Warren Jochem & Kelly Sims & Edward Bright & Marie Urban & Amy Rose & Phillip Coleman & Budhendra Bhaduri, 2013. "Estimating traveler populations at airport and cruise terminals for population distribution and dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1325-1342, September.
    20. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.