IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i16p3149-3165.html
   My bibliography  Save this article

Influenza epidemic spread simulation for Poland — a large scale, individual based model study

Author

Listed:
  • Rakowski, Franciszek
  • Gruziel, Magdalena
  • Bieniasz-Krzywiec, Łukasz
  • Radomski, Jan P.

Abstract

In this work a construction of an agent based model for studying the effects of influenza epidemic in large scale (38 million individuals) stochastic simulations, together with the resulting various scenarios of disease spread in Poland are reported. Simple transportation rules were employed to mimic individuals’ travels in dynamic route-changing schemes, allowing for the infection spread during a journey. Parameter space was checked for stable behaviour, especially towards the effective infection transmission rate variability. Although the model reported here is based on quite simple assumptions, it allowed to observe two different types of epidemic scenarios: characteristic for urban and rural areas. This differentiates it from the results obtained in the analogous studies for the UK or US, where settlement and daily commuting patterns are both substantially different and more diverse. The resulting epidemic scenarios from these ABM simulations were compared with simple, differential equations based, SIR models — both types of the results displaying strong similarities. The pDYN software platform developed here is currently used in the next stage of the project employed to study various epidemic mitigation strategies.

Suggested Citation

  • Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:16:p:3149-3165
    DOI: 10.1016/j.physa.2010.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110003687
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Catherine Dibble & Philip G. Feldman, 2004. "The GeoGraph 3D Computational Laboratory: Network and Terrain Landscapes for RePast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(1), pages 1-7.
    2. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    3. Neil M. Ferguson & Alison P. Galvani & Robin M. Bush, 2003. "Ecological and immunological determinants of influenza evolution," Nature, Nature, vol. 422(6930), pages 428-433, March.
    4. Ülengin, Füsun & Önsel, Sule & Ilker Topçu, Y. & Aktas, Emel & Kabak, Özgür, 2007. "An integrated transportation decision support system for transportation policy decisions: The case of Turkey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 80-97, January.
    5. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    6. Raney, Bryan & Voellmy, Andreas & Cetin, Nurhan & Nagel, Kai, 2002. "Large scale multi-agent transportation simulations," ERSA conference papers ersa02p333, European Regional Science Association.
    7. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    8. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    9. Franciszek Rakowski & Magdalena Gruziel & Michal Krych & Jan P Radomski, 2010. "Large Scale Daily Contacts and Mobility Model - an Individual-Based Countrywide Simulation Study for Poland," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(1), pages 1-13.
    10. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Yuanzheng & Song, Zhichao & Qiu, Xiaogang & Song, Hongbin & Wang, Yong, 2013. "Modular and hierarchical structure of social contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4619-4628.
    2. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    3. Wang, Xingyuan & Zhao, Tianfang & Qin, Xiaomeng, 2016. "Model of epidemic control based on quarantine and message delivery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 168-178.
    4. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    3. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    6. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    7. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    8. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    9. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    10. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    11. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    12. Janiak, Alexandre & Machado, Caio & Turén, Javier, 2021. "Covid-19 contagion, economic activity and business reopening protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 264-284.
    13. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    14. Warren Jochem & Kelly Sims & Edward Bright & Marie Urban & Amy Rose & Phillip Coleman & Budhendra Bhaduri, 2013. "Estimating traveler populations at airport and cruise terminals for population distribution and dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1325-1342, September.
    15. Cuñat, Alejandro & Zymek, Robert, 2022. "The (structural) gravity of epidemics," European Economic Review, Elsevier, vol. 144(C).
    16. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    17. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.
    18. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    19. Joe Hilton & Matt J Keeling, 2020. "Estimation of country-level basic reproductive ratios for novel Coronavirus (SARS-CoV-2/COVID-19) using synthetic contact matrices," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-10, July.
    20. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:16:p:3149-3165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.