IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/1000316.html
   My bibliography  Save this article

Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States

Author

Listed:
  • Jeffrey Shaman
  • Virginia E Pitzer
  • Cécile Viboud
  • Bryan T Grenfell
  • Marc Lipsitch

Abstract

Here, the authors demonstrate that variations of absolute humidity explain both the onset of wintertime influenza transmission and the overarching seasonality of this pathogen in temperate regions.Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions.Author Summary: The origin of seasonality in influenza transmission is both of palpable public health importance and basic scientific interest. Here, we present statistical analyses and a mathematical model of epidemic influenza transmission that provide strong epidemiological evidence for the hypothesis that absolute humidity (AH) drives seasonal variations of influenza transmission in temperate regions. We show that the onset of individual wintertime influenza epidemics is associated with anomalously low AH conditions throughout the United States. In addition, we use AH to modulate the basic reproductive number of influenza within a mathematical model of influenza transmission and compare these simulations with observed excess pneumonia and influenza mortality. These simulations capture key details of the observed seasonal cycle of influenza throughout the US. The results indicate that AH affects both the seasonality of influenza incidence and the timing of individual wintertime influenza outbreaks in temperate regions. The association of anomalously low AH conditions with the onset of wintertime influenza outbreaks suggests that skillful, short-term probabilistic forecasts of epidemic influenza could be developed.

Suggested Citation

  • Jeffrey Shaman & Virginia E Pitzer & Cécile Viboud & Bryan T Grenfell & Marc Lipsitch, 2010. "Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States," PLOS Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
  • Handle: RePEc:plo:pbio00:1000316
    DOI: 10.1371/journal.pbio.1000316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000316
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1000316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.1000316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gavin J. D. Smith & Dhanasekaran Vijaykrishna & Justin Bahl & Samantha J. Lycett & Michael Worobey & Oliver G. Pybus & Siu Kit Ma & Chung Lam Cheung & Jayna Raghwani & Samir Bhatt & J. S. Malik Peiris, 2009. "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic," Nature, Nature, vol. 459(7250), pages 1122-1125, June.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Christina E. Mills & James M. Robins & Marc Lipsitch, 2004. "Transmissibility of 1918 pandemic influenza," Nature, Nature, vol. 432(7019), pages 904-906, December.
    4. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    5. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Valle & James Clark, 2013. "Improving the Modeling of Disease Data from the Government Surveillance System: A Case Study on Malaria in the Brazilian Amazon," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    2. Jeffrey Shaman & Christie Y Jeon & Edward Giovannucci & Marc Lipsitch, 2011. "Shortcomings of Vitamin D-Based Model Simulations of Seasonal Influenza," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-7, June.
    3. Stefano Merler & Marco Ajelli & Andrea Pugliese & Neil M Ferguson, 2011. "Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    2. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    3. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    4. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    5. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    6. Solen Kernéis & Rebecca F Grais & Pierre-Yves Boëlle & Antoine Flahault & Elisabeta Vergu, 2008. "Does the Effectiveness of Control Measures Depend on the Influenza Pandemic Profile?," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-12, January.
    7. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    8. Stefano Merler & Marco Ajelli & Andrea Pugliese & Neil M Ferguson, 2011. "Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-13, September.
    9. Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
    10. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    11. Carrasco, L R & Lee, V J & Chen, M I & Matchar, D B & Thompson, J P & Cook, A R, 2011. "Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective," MPRA Paper 57763, University Library of Munich, Germany.
    12. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    13. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    14. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    15. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    16. Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
    17. Pedro, S.A. & Rwezaura, H. & Mandipezar, A. & Tchuenche, J.M., 2021. "Qualitative Analysis of an influenza model with biomedical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Ken T D Eames & Natasha L Tilston & Ellen Brooks-Pollock & W John Edmunds, 2012. "Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-8, March.
    19. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    20. Marco Ajelli & Stefano Merler, 2008. "The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:1000316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.