IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002425.html
   My bibliography  Save this article

Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza

Author

Listed:
  • Ken T D Eames
  • Natasha L Tilston
  • Ellen Brooks-Pollock
  • W John Edmunds

Abstract

Patterns of social mixing are key determinants of epidemic spread. Here we present the results of an internet-based social contact survey completed by a cohort of participants over 9,000 times between July 2009 and March 2010, during the 2009 H1N1v influenza epidemic. We quantify the changes in social contact patterns over time, finding that school children make 40% fewer contacts during holiday periods than during term time. We use these dynamically varying contact patterns to parameterise an age-structured model of influenza spread, capturing well the observed patterns of incidence; the changing contact patterns resulted in a fall of approximately 35% in the reproduction number of influenza during the holidays. This work illustrates the importance of including changing mixing patterns in epidemic models. We conclude that changes in contact patterns explain changes in disease incidence, and that the timing of school terms drove the 2009 H1N1v epidemic in the UK. Changes in social mixing patterns can be usefully measured through simple internet-based surveys. Author Summary: Changes in patterns of social mixing can result in changes in epidemic behaviour; this was observed during the 2009 influenza pandemic, in which the epidemic declined during school holidays and grew during term time. Until now, little information has been available to quantify how people's mixing patterns change over time. Here, we present the results of an internet-based survey of social mixing patterns that was carried out in the UK throughout the 2009 pandemic. We show that school holidays resulted in a substantial drop in the number of social contacts made each day, particularly between children. To test whether these measured patterns of social mixing could explain the observed epidemic, we used our mixing data in a simple mathematical model of influenza spread. We found that changing social contact behaviour could explain levels of infection in the community, and conclude that the timing of school terms was responsible for the shape of the influenza epidemic.

Suggested Citation

  • Ken T D Eames & Natasha L Tilston & Ellen Brooks-Pollock & W John Edmunds, 2012. "Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-8, March.
  • Handle: RePEc:plo:pcbi00:1002425
    DOI: 10.1371/journal.pcbi.1002425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002425
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    2. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    3. Simon Cauchemez & Alain-Jacques Valleron & Pierre-Yves Boëlle & Antoine Flahault & Neil M. Ferguson, 2008. "Estimating the impact of school closure on influenza transmission from Sentinel data," Nature, Nature, vol. 452(7188), pages 750-754, April.
    4. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mart L Stein & Jim E van Steenbergen & Charnchudhi Chanyasanha & Mathuros Tipayamongkholgul & Vincent Buskens & Peter G M van der Heijden & Wasamon Sabaiwan & Linus Bengtsson & Xin Lu & Anna E Thorson, 2014. "Online Respondent-Driven Sampling for Studying Contact Patterns Relevant for the Spread of Close-Contact Pathogens: A Pilot Study in Thailand," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    2. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    3. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. Yang-chih Fu & Da-Wei Wang & Jen-Hsiang Chuang, 2012. "Representative Contact Diaries for Modeling the Spread of Infectious Diseases in Taiwan," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-7, October.
    7. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    8. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    9. Adam J Kucharski & Andrew J K Conlan & Ken T D Eames, 2015. "School’s Out: Seasonal Variation in the Movement Patterns of School Children," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-10, June.
    10. Jérôme Adda, 2016. "Economic Activity and the Spread of Viral Diseases: Evidence from High Frequency Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 891-941.
    11. Brotherhood, Luiz & Kircher, Philipp & Santos, Cezar & Tertilt, Michèle, 2023. "Optimal Age-based Policies for Pandemics: An Economic Analysis of Covid-19 and Beyond," IDB Publications (Working Papers) 13295, Inter-American Development Bank.
    12. Alexandru Topîrceanu, 2024. "A Spatial Agent-Based Model for Studying the Effect of Human Mobility Patterns on Epidemic Outbreaks in Urban Areas," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
    13. Casey B. Mulligan, 2021. "The incidence and magnitude of the health costs of in-person schooling during the COVID-19 pandemic," Public Choice, Springer, vol. 188(3), pages 303-332, September.
    14. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    15. Janiak, Alexandre & Machado, Caio & Turén, Javier, 2021. "Covid-19 contagion, economic activity and business reopening protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 264-284.
    16. Brotherhood, Luiz & Kircher, Philipp & Santos, Cezar & Tertilt, Michele, 2024. "Optimal Age-based Policies for Pandemics: An Economic Analysis of Covid-19 and Beyond," LIDAM Discussion Papers CORE 2024012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Nao Nukiwa-Souma & Alexanderyn Burmaa & Taro Kamigaki & Ishiin Od & Namuutsetsegiin Bayasgalan & Badarchiin Darmaa & Akira Suzuki & Pagbajabyn Nymadawa & Hitoshi Oshitani, 2012. "Influenza Transmission in a Community during a Seasonal Influenza A(H3N2) Outbreak (2010–2011) in Mongolia: A Community-Based Prospective Cohort Study," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    18. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Jeffrey Shaman & Virginia E Pitzer & Cécile Viboud & Bryan T Grenfell & Marc Lipsitch, 2010. "Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States," PLOS Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
    20. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.