IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0000012.html
   My bibliography  Save this article

The Effectiveness of Contact Tracing in Emerging Epidemics

Author

Listed:
  • Don Klinkenberg
  • Christophe Fraser
  • Hans Heesterbeek

Abstract

Background: Contact tracing plays an important role in the control of emerging infectious diseases, but little is known yet about its effectiveness. Here we deduce from a generic mathematical model how effectiveness of tracing relates to various aspects of time, such as the course of individual infectivity, the (variability in) time between infection and symptom-based detection, and delays in the tracing process. In addition, the possibility of iteratively tracing of yet asymptomatic infecteds is considered. With these insights we explain why contact tracing was and will be effective for control of smallpox and SARS, only partially effective for foot-and-mouth disease, and likely not effective for influenza. Methods and Findings: We investigate contact tracing in a model of an emerging epidemic that is flexible enough to use for most infections. We consider isolation of symptomatic infecteds as the basic scenario, and express effectiveness as the proportion of contacts that need to be traced for a reproduction ratio smaller than 1. We obtain general results for special cases, which are interpreted with respect to the likely success of tracing for influenza, smallpox, SARS, and foot-and-mouth disease epidemics. Conclusions: We conclude that (1) there is no general predictive formula for the proportion to be traced as there is for the proportion to be vaccinated; (2) variability in time to detection is favourable for effective tracing; (3) tracing effectiveness need not be sensitive to the duration of the latent period and tracing delays; (4) iterative tracing primarily improves effectiveness when single-step tracing is on the brink of being effective.

Suggested Citation

  • Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
  • Handle: RePEc:plo:pone00:0000012
    DOI: 10.1371/journal.pone.0000012
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000012
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0000012&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0000012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fetzer, Thiemo & Graeber, Thomas, 2020. "Does Contact Tracing Work? Quasi-Experimental Evidence from an Excel Error in England," CEPR Discussion Papers 15494, C.E.P.R. Discussion Papers.
    2. Raghu Raman & Krishnashree Achuthan & Ricardo Vinuesa & Prema Nedungadi, 2021. "COVIDTAS COVID-19 Tracing App Scale—An Evaluation Framework," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Rachid Laajaj & Duncan Webb & Danilo Aristizabal & Eduardo Behrentz & Raquel Bernal & Giancarlo Buitrago & Zulma Cucunubá & Fernando de la Hoz, 2021. "Understanding how socioeconomic inequalities drive inequalities in SARS-CoV-2 infections," Documentos CEDE 19241, Universidad de los Andes, Facultad de Economía, CEDE.
    4. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    5. Kenji Mizumoto & Keisuke Ejima & Taro Yamamoto & Hiroshi Nishiura, 2013. "Vaccination and Clinical Severity: Is the Effectiveness of Contact Tracing and Case Isolation Hampered by Past Vaccination?," IJERPH, MDPI, vol. 10(3), pages 1-14, February.
    6. Howell, Bronwyn E. & Potgieter, Petrus H., 2022. "Smartphone-Based COVID-19 contact tracing apps – antipodean insights," 31st European Regional ITS Conference, Gothenburg 2022: Reining in Digital Platforms? Challenging monopolies, promoting competition and developing regulatory regimes 265635, International Telecommunications Society (ITS).
    7. Andrew Perrault & Marie Charpignon & Jonathan Gruber & Milind Tambe & Maimuna Majumder, 2020. "Designing Efficient Contact Tracing Through Risk-Based Quarantining," NBER Working Papers 28135, National Bureau of Economic Research, Inc.
    8. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Atul Pokharel & Robert Soulé & Avi Silberschatz, 2021. "A case for location based contact tracing," Health Care Management Science, Springer, vol. 24(2), pages 420-438, June.
    10. Esra Ozdenerol & Rebecca Michelle Bingham-Byrne & Jacob Seboly, 2023. "Female Leadership during COVID-19: The Effectiveness of Diverse Approaches towards Mitigation Management during a Pandemic," IJERPH, MDPI, vol. 20(21), pages 1-36, November.
    11. Choi, K. & Choi, Hoyun & Kahng, B., 2022. "COVID-19 epidemic under the K-quarantine model: Network approach," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Bjarke Frost Nielsen & Kim Sneppen & Lone Simonsen & Joachim Mathiesen, 2021. "Differences in social activity increase efficiency of contact tracing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-11, October.
    13. Ting Wan Tan & Han Ling Tan & Man Na Chang & Wen Shu Lin & Chih Ming Chang, 2021. "Effectiveness of Epidemic Preventive Policies and Hospital Strategies in Combating COVID-19 Outbreak in Taiwan," IJERPH, MDPI, vol. 18(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    2. Rob Deardon & Babak Habibzadeh & Hau Yi Chung, 2012. "Spatial measurement error in infectious disease models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1139-1150, November.
    3. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    4. Krämer, J. & Farwick, J., 2009. "Schäden in der Landwirtschaft durch Maul- und Klauenseuche: Simulationsrechnungen für ausgewählte Modellregionen," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    5. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    6. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    7. Montazeri Hesam & Little Susan & Mozaffarilegha Mozhgan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    8. Tom Lindström & Daniel A Grear & Michael Buhnerkempe & Colleen T Webb & Ryan S Miller & Katie Portacci & Uno Wennergren, 2013. "A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    9. Larry Stikeleather & William Morrow & Robert Meyer & Craig Baird & Burt Halbert, 2013. "Evaluation of CO 2 Application Requirements for On-Farm Mass Depopulation of Swine in a Disease Emergency," Agriculture, MDPI, vol. 3(4), pages 1-14, September.
    10. Peter Brommesson & Uno Wennergren & Tom Lindström, 2016. "Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
    11. Thomas House & Matt J Keeling, 2010. "The Impact of Contact Tracing in Clustered Populations," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-9, March.
    12. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    13. repec:sae:envval:v:15:y:2006:i:4:p:441-462 is not listed on IDEAS
    14. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    15. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2013. "Analysis of an epidemic model with awareness programs by media on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 1-11.
    16. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    17. Boni, Maciej F. & Galvani, Alison P. & Wickelgren, Abraham L. & Malani, Anup, 2013. "Economic epidemiology of avian influenza on smallholder poultry farms," Theoretical Population Biology, Elsevier, vol. 90(C), pages 135-144.
    18. Maud Marsot & Séverine Rautureau & Barbara Dufour & Benoit Durand, 2014. "Impact of Stakeholders Influence, Geographic Level and Risk Perception on Strategic Decisions in Simulated Foot and Mouth Disease Epizootics in France," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
    19. Parham, Paul E. & Singh, Brajendra K. & Ferguson, Neil M., 2008. "Analytic approximation of spatial epidemic models of foot and mouth disease," Theoretical Population Biology, Elsevier, vol. 73(3), pages 349-368.
    20. Finlay Campbell & Anne Cori & Neil Ferguson & Thibaut Jombart, 2019. "Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
    21. Hennessy, David A. & Rault, Arnaud, 2023. "On systematically insufficient biosecurity actions and policies to manage infectious animal disease," Ecological Economics, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0000012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.