IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236857.html
   My bibliography  Save this article

Feasibility study of mitigation and suppression strategies for controlling COVID-19 outbreaks in London and Wuhan

Author

Listed:
  • Po Yang
  • Jun Qi
  • Shuhao Zhang
  • Xulong Wang
  • Gaoshan Bi
  • Yun Yang
  • Bin Sheng
  • Geng Yang

Abstract

Recent outbreaks of coronavirus disease 2019 (COVID-19) has led a global pandemic cross the world. Most countries took two main interventions: suppression like immediate lockdown cities at epicenter or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both strategies have their apparent merits and limitations; it becomes extremely hard to conduct one intervention as the most feasible way to all countries. Targeting at this problem, this paper conducted a feasibility study by defining a mathematical model named SEMCR, it extended traditional SEIR (Susceptible-Exposed-Infectious-Recovered) model by adding two key features: a direct connection between Exposed and Recovered populations, and separating infections into mild and critical cases. It defined parameters to classify two stages of COVID-19 control: active contain by isolation of cases and contacts, passive contain by suppression or mitigation. The model was fitted and evaluated with public dataset containing daily number of confirmed active cases including Wuhan and London during January 2020 and March 2020. The simulated results showed that 1) Immediate suppression taken in Wuhan significantly reduced the total exposed and infectious populations, but it has to be consistently maintained at least 90 days (by the middle of April 2020). Without taking this intervention, we predict the number of infections would have been 73 folders higher by the middle of April 2020. Its success requires efficient government initiatives and effective collaborative governance for mobilizing of corporate resources to provide essential goods. This mode may be not suitable to other countries without efficient collaborative governance and sufficient health resources. 2) In London, it is possible to take a hybrid intervention of suppression and mitigation for every 2 or 3 weeks over a longer period to balance the total infections and economic loss. While the total infectious populations in this scenario would be possibly 2 times than the one taking suppression, economic loss and recovery of London would be less affected. 3) Both in Wuhan and London cases, one important issue of fitting practical data was that there were a portion (probably 62.9% in Wuhan) of self-recovered populations that were asymptomatic or mild symptomatic. This finding has been recently confirmed by other studies that the seroprevalence in Wuhan varied between 3.2% and 3.8% in different sub-regions. It highlights that the epidemic is far from coming to an end by means of herd immunity. Early release of intervention intensity potentially increased a risk of the second outbreak.

Suggested Citation

  • Po Yang & Jun Qi & Shuhao Zhang & Xulong Wang & Gaoshan Bi & Yun Yang & Bin Sheng & Geng Yang, 2020. "Feasibility study of mitigation and suppression strategies for controlling COVID-19 outbreaks in London and Wuhan," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
  • Handle: RePEc:plo:pone00:0236857
    DOI: 10.1371/journal.pone.0236857
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236857
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236857&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michelangelo Bin & Peter Y K Cheung & Emanuele Crisostomi & Pietro Ferraro & Hugo Lhachemi & Roderick Murray-Smith & Connor Myant & Thomas Parisini & Robert Shorten & Sebastian Stein & Lewi Stone, 2021. "Post-lockdown abatement of COVID-19 by fast periodic switching," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-34, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    2. Hensel, Lukas & Witte, Marc & Caria, A. Stefano & Fetzer, Thiemo & Fiorin, Stefano & Götz, Friedrich M. & Gomez, Margarita & Haushofer, Johannes & Ivchenko, Andriy & Kraft-Todd, Gordon & Reutskaja, El, 2022. "Global Behaviors, Perceptions, and the Emergence of Social Norms at the Onset of the COVID-19 Pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 473-496.
    3. Basco, Sergi & Domènech, Jordi & Rosés, Joan R., 2021. "The redistributive effects of pandemics: Evidence on the Spanish flu," World Development, Elsevier, vol. 141(C).
    4. Claudio Neidhöfer & Guido Neidhöfer, 2020. "The Effectiveness of School Closures and Other Pre-Lockdown COVID-19 Mitigation Strategies in Argentina, Italy, and South Korea," CEDLAS, Working Papers 0266, CEDLAS, Universidad Nacional de La Plata.
    5. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    6. Brandon Lieberthal & Allison M Gardner, 2021. "Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-22, March.
    7. Basco, Sergi & Domènech, Jordi & Rosés, Joan R., 2021. "The redistributive effects of pandemics: Evidence on the Spanish flu," World Development, Elsevier, vol. 141(C).
    8. Amit Summan & Arindam Nandi, 2022. "Timing of non-pharmaceutical interventions to mitigate COVID-19 transmission and their effects on mobility: a cross-country analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 105-117, February.
    9. Andy Dobson & Cristiano Ricci & Raouf Boucekkine & Giorgio Fabbri & Ted Loch-Temzelides & Mercedes Pascual, 2023. "Balancing economic and epidemiological interventions in the early stages of pathogen emergence," Post-Print hal-04150117, HAL.
    10. Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    12. Laura Matrajt & M Elizabeth Halloran & Ira M Longini Jr, 2013. "Optimal Vaccine Allocation for the Early Mitigation of Pandemic Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-15, March.
    13. Francesco Di Lauro & István Z Kiss & Joel C Miller, 2021. "Optimal timing of one-shot interventions for epidemic control," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-24, March.
    14. Pierre-Alexandre Bliman & Michel Duprez & Yannick Privat & Nicolas Vauchelet, 2021. "Optimal Immunity Control and Final Size Minimization by Social Distancing for the SIR Epidemic Model," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 408-436, May.
    15. Hasnan Baber, 2021. "Efficacy of COVID-19 screening system and customer satisfaction in banks: moderating role of the perceived threat and health risk," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 26(4), pages 295-304, December.
    16. Esra Ozdenerol & Rebecca Michelle Bingham-Byrne & Jacob Seboly, 2023. "Female Leadership during COVID-19: The Effectiveness of Diverse Approaches towards Mitigation Management during a Pandemic," IJERPH, MDPI, vol. 20(21), pages 1-36, November.
    17. Silva, Maria Laura & Perrier, Lionel & Cohen, Jean Marie & Paget, William John & Mosnier, Anne & Späth, Hans Martin, 2015. "A literature review to identify factors that determine policies for influenza vaccination," Health Policy, Elsevier, vol. 119(6), pages 697-708.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.