Author
Listed:
- Grigorios Fanourgakis
(Friedrich Miescher Institute for Biomedical Research)
- Laura Gaspa-Toneu
(Friedrich Miescher Institute for Biomedical Research
University of Basel)
- Pavel A. Komarov
(Friedrich Miescher Institute for Biomedical Research
University of Basel)
- Panagiotis Papasaikas
(Friedrich Miescher Institute for Biomedical Research)
- Evgeniy A. Ozonov
(Friedrich Miescher Institute for Biomedical Research)
- Sebastien A. Smallwood
(Friedrich Miescher Institute for Biomedical Research)
- Antoine H. F. M. Peters
(Friedrich Miescher Institute for Biomedical Research
University of Basel)
Abstract
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation. Failing de novo DNAme in Dnmt3a/Dnmt3b double deficient spermatogonia is associated with increased nucleosome occupancy in mature sperm, preferentially at sites with higher CpG content, supporting the model that DNAme modulates nucleosome retention in sperm. To assess the impact of altered sperm chromatin in formatting embryonic chromatin, we measure H3K4me3 occupancy at paternal and maternal alleles in 2-cell embryos using a transposon-based tagging approach. Our data show that reduced DNAme in sperm renders paternal alleles permissive for H3K4me3 establishment in early embryos, independently of possible paternal inheritance of sperm born H3K4me3. Together, this study provides evidence that paternally inherited DNAme directs chromatin formation during early embryonic development.
Suggested Citation
Grigorios Fanourgakis & Laura Gaspa-Toneu & Pavel A. Komarov & Panagiotis Papasaikas & Evgeniy A. Ozonov & Sebastien A. Smallwood & Antoine H. F. M. Peters, 2025.
"DNA methylation modulates nucleosome retention in sperm and H3K4 methylation deposition in early mouse embryos,"
Nature Communications, Nature, vol. 16(1), pages 1-22, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55441-1
DOI: 10.1038/s41467-024-55441-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55441-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.