IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1008991.html
   My bibliography  Save this article

Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p

Author

Listed:
  • Anthony V Furano
  • Charlie E Jones
  • Vipul Periwal
  • Kathryn E Callahan
  • Jean-Claude Walser
  • Pamela R Cook

Abstract

Accounting for continual evolution of deleterious L1 retrotransposon families, which can contain hundreds to thousands of members remains a major issue in mammalian biology. L1 activity generated upwards of 40% of some mammalian genomes, including humans where they remain active, causing genetic defects and rearrangements. L1 encodes a coiled coil-containing protein that is essential for retrotransposition, and the emergence of novel primate L1 families has been correlated with episodes of extensive amino acid substitutions in the coiled coil. These results were interpreted as an adaptive response to maintain L1 activity, however its mechanism remained unknown. Although an adventitious mutation can inactivate coiled coil function, its effect could be buffered by epistatic interactions within the coiled coil, made more likely if the family contains a diverse set of coiled coil sequences—collectively referred to as the coiled coil sequence space. Amino acid substitutions that do not affect coiled coil function (i.e., its phenotype) could be “hidden” from (not subject to) purifying selection. The accumulation of such substitutions, often referred to as cryptic genetic variation, has been documented in various proteins. Here we report that this phenomenon was in effect during the latest episode of primate coiled coil evolution, which occurred 30–10 MYA during the emergence of primate L1Pa7–L1Pa3 families. First, we experimentally demonstrated that while coiled coil function (measured by retrotransposition) can be eliminated by single epistatic mutations, it nonetheless can also withstand extensive amino acid substitutions. Second, principal component and cluster analysis showed that the coiled coil sequence space of each of the L1Pa7-3 families was notably increased by the presence of distinct, coexisting coiled coil sequences. Thus, sampling related networks of functional sequences rather than traversing discrete adaptive states characterized the persistence L1 activity during this evolutionary event.Author summary: Mammalian L1 retrotransposons replicate by copying their RNA into genomic DNA. Despite being deleterious, a single lineage of successive L1 families emerged in most mammalian genomes, each amplifying before undergoing extinction and replacement by another active family. During ~80 million years of primate evolution this process generated ~40% of the human genome where L1 remains active. Thus, accounting for the persistence of L1 is a major issue. Emergent L1 families are often associated with episodes of extensive amino substitutions in the L1 encoded ORF1p protein, which is required for L1 replication. These bore the signature of positive selection (more amino acid substitutions than expected by chance), which often indicates an adaptive change, implying an “arms race” between L1 and its host. Determing the contestants in this arms race would reveal a major aspect of L1/host interaction. But our findings now suggest an alternative evolutionary model. Most of the substitutions did not affect ORF1p function, and being “hidden” from selection their accumulation could increase sequence diversity (sequence space) of functional ORF1p, which we demonstrated by principal component analysis. The availability of multiple functional ORF1p sequences could buffer ORF1p activity from random inactivating mutations, an evolutionary strategy that could ensure L1 survival.

Suggested Citation

  • Anthony V Furano & Charlie E Jones & Vipul Periwal & Kathryn E Callahan & Jean-Claude Walser & Pamela R Cook, 2020. "Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-19, August.
  • Handle: RePEc:plo:pgen00:1008991
    DOI: 10.1371/journal.pgen.1008991
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008991
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1008991&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1008991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric J. Hayden & Evandro Ferrada & Andreas Wagner, 2011. "Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme," Nature, Nature, vol. 474(7349), pages 92-95, June.
    2. Camilo Guzmán & Manish Bagga & Amanpreet Kaur & Jukka Westermarck & Daniel Abankwa, 2014. "ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    3. Déborah Bourc'his & Timothy H. Bestor, 2004. "Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L," Nature, Nature, vol. 431(7004), pages 96-99, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sam F Greenbury & Steffen Schaper & Sebastian E Ahnert & Ard A Louis, 2016. "Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-27, March.
    2. Shubha P. Kale & Lakisha Moore & Prescott L. Deininger & Astrid M. Roy-Engel, 2005. "Heavy Metals Stimulate Human LINE-1 Retrotransposition," IJERPH, MDPI, vol. 2(1), pages 1-10, April.
    3. Javier Santos-Moreno & Eve Tasiudi & Hadiastri Kusumawardhani & Joerg Stelling & Yolanda Schaerli, 2023. "Robustness and innovation in synthetic genotype networks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Patricia Gerdes & Sue Mei Lim & Adam D. Ewing & Michael R. Larcombe & Dorothy Chan & Francisco J. Sanchez-Luque & Lucinda Walker & Alexander L. Carleton & Cini James & Anja S. Knaupp & Patricia E. Car, 2022. "Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Rigato, Emanuele & Fusco, Giuseppe, 2020. "A heuristic model of the effects of phenotypic robustness in adaptive evolution," Theoretical Population Biology, Elsevier, vol. 136(C), pages 22-30.
    6. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Miguel A Fortuna & Luis Zaman & Charles Ofria & Andreas Wagner, 2017. "The genotype-phenotype map of an evolving digital organism," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-20, February.
    8. Ahmad Luqman-Fatah & Yuzo Watanabe & Kazuko Uno & Fuyuki Ishikawa & John V. Moran & Tomoichiro Miyoshi, 2023. "The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction," Nature Communications, Nature, vol. 14(1), pages 1-26, December.
    9. Pascal Giehr & Charalampos Kyriakopoulos & Gabriella Ficz & Verena Wolf & Jörn Walter, 2016. "The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-16, May.
    10. Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Zhengyi Zhen & Yu Chen & Haiyan Wang & Huanyin Tang & Haiping Zhang & Haipeng Liu & Ying Jiang & Zhiyong Mao, 2023. "Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Danielle S. Potter & Ruochen Du & Stephan R. Bohl & Kin-Hoe Chow & Keith L. Ligon & Raphael Bueno & Anthony Letai, 2023. "Dynamic BH3 profiling identifies pro-apoptotic drug combinations for the treatment of malignant pleural mesothelioma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Johanna Lilja & Jasmin Kaivola & James R. W. Conway & Joni Vuorio & Hanna Parkkola & Pekka Roivas & Michal Dibus & Megan R. Chastney & Taru Varila & Guillaume Jacquemet & Emilia Peuhu & Emily Wang & U, 2024. "SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Julia Arand & David Spieler & Tommy Karius & Miguel R Branco & Daniela Meilinger & Alexander Meissner & Thomas Jenuwein & Guoliang Xu & Heinrich Leonhardt & Verena Wolf & Jörn Walter, 2012. "In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases," PLOS Genetics, Public Library of Science, vol. 8(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1008991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.