IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50526-3.html
   My bibliography  Save this article

Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction

Author

Listed:
  • Xinyi Chen

    (University of California)

  • Yiran Guo

    (Duke University School of Medicine
    Duke University School of Medicine)

  • Ting Zhao

    (University of California)

  • Jiuwei Lu

    (University of California)

  • Jian Fang

    (University of California)

  • Yinsheng Wang

    (University of California
    University of California)

  • Gang Greg Wang

    (Duke University School of Medicine
    Duke University School of Medicine
    Duke University School of Medicine)

  • Jikui Song

    (University of California)

Abstract

Isoform 1 of DNA methyltransferase DNMT3A (DNMT3A1) specifically recognizes nucleosome monoubiquitylated at histone H2A lysine-119 (H2AK119ub1) for establishment of DNA methylation. Mis-regulation of this process may cause aberrant DNA methylation and pathogenesis. However, the molecular basis underlying DNMT3A1−nucleosome interaction remains elusive. Here we report the cryo-EM structure of DNMT3A1’s ubiquitin-dependent recruitment (UDR) fragment complexed with H2AK119ub1-modified nucleosome. DNMT3A1 UDR occupies an extensive nucleosome surface, involving the H2A-H2B acidic patch, a surface groove formed by H2A and H3, nucleosomal DNA, and H2AK119ub1. The DNMT3A1 UDR’s interaction with H2AK119ub1 affects the functionality of DNMT3A1 in cells in a context-dependent manner. Our structural and biochemical analysis also reveals competition between DNMT3A1 and JARID2, a cofactor of polycomb repression complex 2 (PRC2), for nucleosome binding, suggesting the interplay between different epigenetic pathways. Together, this study reports a molecular basis for H2AK119ub1-dependent DNMT3A1−nucleosome association, with important implications in DNMT3A1-mediated DNA methylation in development.

Suggested Citation

  • Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50526-3
    DOI: 10.1038/s41467-024-50526-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50526-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50526-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xue Guo & Ling Wang & Jie Li & Zhanyu Ding & Jianxiong Xiao & Xiaotong Yin & Shuang He & Pan Shi & Liping Dong & Guohong Li & Changlin Tian & Jiawei Wang & Yao Cong & Yanhui Xu, 2015. "Structural insight into autoinhibition and histone H3-induced activation of DNMT3A," Nature, Nature, vol. 517(7536), pages 640-644, January.
    3. Hengbin Wang & Liangjun Wang & Hediye Erdjument-Bromage & Miguel Vidal & Paul Tempst & Richard S. Jones & Yi Zhang, 2004. "Role of histone H2A ubiquitination in Polycomb silencing," Nature, Nature, vol. 431(7010), pages 873-878, October.
    4. Daniel N. Weinberg & Simon Papillon-Cavanagh & Haifen Chen & Yuan Yue & Xiao Chen & Kartik N. Rajagopalan & Cynthia Horth & John T. McGuire & Xinjing Xu & Hamid Nikbakht & Agata E. Lemiesz & Dylan M. , 2019. "The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape," Nature, Nature, vol. 573(7773), pages 281-286, September.
    5. Wendan Ren & Huitao Fan & Sara A. Grimm & Jae Jin Kim & Linhui Li & Yiran Guo & Christopher James Petell & Xiao-Feng Tan & Zhi-Min Zhang & John P. Coan & Jiekai Yin & Dae In Kim & Linfeng Gao & Ling C, 2021. "DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Da Jia & Renata Z. Jurkowska & Xing Zhang & Albert Jeltsch & Xiaodong Cheng, 2007. "Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation," Nature, Nature, vol. 449(7159), pages 248-251, September.
    7. Raphaël Margueron & Danny Reinberg, 2011. "The Polycomb complex PRC2 and its mark in life," Nature, Nature, vol. 469(7330), pages 343-349, January.
    8. Linfeng Gao & Max Emperle & Yiran Guo & Sara A. Grimm & Wendan Ren & Sabrina Adam & Hidetaka Uryu & Zhi-Min Zhang & Dongliang Chen & Jiekai Yin & Michael Dukatz & Hiwot Anteneh & Renata Z. Jurkowska &, 2020. "Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    9. Ting-Hai Xu & Minmin Liu & X. Edward Zhou & Gangning Liang & Gongpu Zhao & H. Eric Xu & Karsten Melcher & Peter A. Jones, 2020. "Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B," Nature, Nature, vol. 586(7827), pages 151-155, October.
    10. Sarah Cooper & Anne Grijzenhout & Elizabeth Underwood & Katia Ancelin & Tianyi Zhang & Tatyana B. Nesterova & Burcu Anil-Kirmizitas & Andrew Bassett & Susanne M. Kooistra & Karl Agger & Kristian Helin, 2016. "Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    11. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    12. Hiwot Anteneh & Jian Fang & Jikui Song, 2020. "Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    13. Emmanuelle Viré & Carmen Brenner & Rachel Deplus & Loïc Blanchon & Mario Fraga & Céline Didelot & Lluis Morey & Aleyde Van Eynde & David Bernard & Jean-Marie Vanderwinden & Mathieu Bollen & Manel Este, 2006. "The Polycomb group protein EZH2 directly controls DNA methylation," Nature, Nature, vol. 439(7078), pages 871-874, February.
    14. Zhi-Min Zhang & Rui Lu & Pengcheng Wang & Yang Yu & Dongliang Chen & Linfeng Gao & Shuo Liu & Debin Ji & Scott B Rothbart & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2018. "Structural basis for DNMT3A-mediated de novo DNA methylation," Nature, Nature, vol. 554(7692), pages 387-391, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Seiichi Yano & Takashi Ishiuchi & Shusaku Abe & Satoshi H. Namekawa & Gang Huang & Yoshihiro Ogawa & Hiroyuki Sasaki, 2022. "Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Lihu Gong & Xiuli Liu & Lianying Jiao & Xin Yang & Andrew Lemoff & Xin Liu, 2022. "CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    13. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    15. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Wenjing Yan & Yongwang Zhong & Xin Hu & Tuan Xu & Yinghua Zhang & Stephen Kales & Yanyan Qu & Daniel C. Talley & Bolormaa Baljinnyam & Christopher A. LeClair & Anton Simeonov & Brian M. Polster & Ruil, 2023. "Auranofin targets UBA1 and enhances UBA1 activity by facilitating ubiquitin trans-thioesterification to E2 ubiquitin-conjugating enzymes," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50526-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.