IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39924-1.html
   My bibliography  Save this article

Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation

Author

Listed:
  • Xiaoqing Nie

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qianhua Xu

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Chengpeng Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fengling Chen

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Qizhi Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dandan Qin

    (Chinese Academy of Sciences)

  • Rui Wang

    (Chinese Academy of Sciences)

  • Zheng Gao

    (Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University)

  • Xukun Lu

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Xinai Yang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chen Gu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wei Xie

    (Tsinghua University
    Tsinghua-Peking Center for Life Sciences)

  • Lei Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Zygotic genome activation (ZGA) is essential for early embryonic development. However, the regulation of ZGA remains elusive in mammals. Here we report that a maternal factor TDP-43, a nuclear transactive response DNA-binding protein, regulates ZGA through RNA Pol II and is essential for mouse early embryogenesis. Maternal TDP-43 translocates from the cytoplasm into the nucleus at the early two-cell stage when minor to major ZGA transition occurs. Genetic deletion of maternal TDP-43 results in mouse early embryos arrested at the two-cell stage. TDP-43 co-occupies with RNA Pol II as large foci in the nucleus and also at the promoters of ZGA genes at the late two-cell stage. Biochemical evidence indicates that TDP-43 binds Polr2a and Cyclin T1. Depletion of maternal TDP-43 caused the loss of Pol II foci and reduced Pol II binding on chromatin at major ZGA genes, accompanied by defective ZGA. Collectively, our results suggest that maternal TDP-43 is critical for mouse early embryonic development, in part through facilitating the correct RNA Pol II configuration and zygotic genome activation.

Suggested Citation

  • Xiaoqing Nie & Qianhua Xu & Chengpeng Xu & Fengling Chen & Qizhi Wang & Dandan Qin & Rui Wang & Zheng Gao & Xukun Lu & Xinai Yang & Yu Wu & Chen Gu & Wei Xie & Lei Li, 2023. "Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39924-1
    DOI: 10.1038/s41467-023-39924-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39924-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39924-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Arne Dahl & Inkyung Jung & Håvard Aanes & Gareth D. Greggains & Adeel Manaf & Mads Lerdrup & Guoqiang Li & Samantha Kuan & Bin Li & Ah Young Lee & Sebastian Preissl & Ingunn Jermstad & Mads Haugl, 2016. "Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition," Nature, Nature, vol. 537(7621), pages 548-552, September.
    2. Bofeng Liu & Qianhua Xu & Qiujun Wang & Su Feng & Fangnong Lai & Peizhe Wang & Fangyuan Zheng & Yunlong Xiang & Jingyi Wu & Junwei Nie & Cui Qiu & Weikun Xia & Lijia Li & Guang Yu & Zili Lin & Kai Xu , 2020. "The landscape of RNA Pol II binding reveals a stepwise transition during ZGA," Nature, Nature, vol. 587(7832), pages 139-144, November.
    3. Jingyi Wu & Bo Huang & He Chen & Qiangzong Yin & Yang Liu & Yunlong Xiang & Bingjie Zhang & Bofeng Liu & Qiujun Wang & Weikun Xia & Wenzhi Li & Yuanyuan Li & Jing Ma & Xu Peng & Hui Zheng & Jia Ming &, 2016. "The landscape of accessible chromatin in mammalian preimplantation embryos," Nature, Nature, vol. 534(7609), pages 652-657, June.
    4. Miler T. Lee & Ashley R. Bonneau & Carter M. Takacs & Ariel A. Bazzini & Kate R. DiVito & Elizabeth S. Fleming & Antonio J. Giraldez, 2013. "Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition," Nature, Nature, vol. 503(7476), pages 360-364, November.
    5. Azusa Inoue & Lan Jiang & Falong Lu & Tsukasa Suzuki & Yi Zhang, 2017. "Maternal H3K27me3 controls DNA methylation-independent imprinting," Nature, Nature, vol. 547(7664), pages 419-424, July.
    6. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Mathew Pette & Andrew Dimond & António M. Galvão & Steven J. Millership & Wilson To & Chiara Prodani & Gráinne McNamara & Ludovica Bruno & Alessandro Sardini & Zoe Webster & James McGinty & Paul M. W., 2022. "Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yun-Wen Wu & Sen Li & Wei Zheng & Yan-Chu Li & Lu Chen & Yong Zhou & Zuo-Qi Deng & Ge Lin & Heng-Yu Fan & Qian-Qian Sha, 2022. "Dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Seiichi Yano & Takashi Ishiuchi & Shusaku Abe & Satoshi H. Namekawa & Gang Huang & Yoshihiro Ogawa & Hiroyuki Sasaki, 2022. "Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Zhengyi Li & Haiyan Xu & Jiaqun Li & Xiao Xu & Junjiao Wang & Danya Wu & Jiateng Zhang & Juan Liu & Ziwei Xue & Guankai Zhan & Bobby Cheng Peow Tan & Di Chen & Yun-Shen Chan & Huck Hui Ng & Wanlu Liu , 2023. "Selective binding of retrotransposons by ZFP352 facilitates the timely dissolution of totipotency network," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Meijiang Gao & Marina Veil & Marcus Rosenblatt & Aileen Julia Riesle & Anna Gebhard & Helge Hass & Lenka Buryanova & Lev Y. Yampolsky & Björn Grüning & Sergey V. Ulianov & Jens Timmer & Daria Onichtch, 2022. "Pluripotency factors determine gene expression repertoire at zygotic genome activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Di Gao & Chao Li & Shao-Yuan Liu & Teng-Teng Xu & Xiao-Ting Lin & Yong-Peng Tan & Fu-Min Gao & Li-Tao Yi & Jian V. Zhang & Jun-Yu Ma & Tie-Gang Meng & William S. B. Yeung & Kui Liu & Xiang-Hong Ou & R, 2024. "P300 regulates histone crotonylation and preimplantation embryo development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Saurabh J. Pradhan & Puli Chandramouli Reddy & Michael Smutny & Ankita Sharma & Keisuke Sako & Meghana S. Oak & Rini Shah & Mrinmoy Pal & Ojas Deshpande & Greg Dsilva & Yin Tang & Rakesh Mishra & Giri, 2021. "Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    9. Le Tran Phuc Khoa & Wentao Yang & Mengrou Shan & Li Zhang & Fengbiao Mao & Bo Zhou & Qiang Li & Rebecca Malcore & Clair Harris & Lili Zhao & Rajesh C. Rao & Shigeki Iwase & Sundeep Kalantry & Stephani, 2024. "Quiescence enables unrestricted cell fate in naive embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Aileen Julia Riesle & Meijiang Gao & Marcus Rosenblatt & Jacques Hermes & Helge Hass & Anna Gebhard & Marina Veil & Björn Grüning & Jens Timmer & Daria Onichtchouk, 2023. "Activator-blocker model of transcriptional regulation by pioneer-like factors," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Yan Bi & Zhifen Tu & Jianfeng Zhou & Xuehao Zhu & Hong Wang & Shaorong Gao & Yixuan Wang, 2022. "Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Wen-Lan Yang & Weinan Qiu & Ting Zhang & Kai Xu & Zi-Juan Gu & Yu Zhou & Heng-Ji Xu & Zhong-Zhou Yang & Bin Shen & Yong-Liang Zhao & Qi Zhou & Ying Yang & Wei Li & Peng-Yuan Yang & Yun-Gui Yang, 2023. "Nsun2 coupling with RoRγt shapes the fate of Th17 cells and promotes colitis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Lior Fishman & Avani Modak & Gal Nechooshtan & Talya Razin & Florian Erhard & Aviv Regev & Jeffrey A. Farrell & Michal Rabani, 2024. "Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Xuemeng Zhou & Tsz Wing Sam & Ah Young Lee & Danny Leung, 2021. "Mouse strain-specific polymorphic provirus functions as cis-regulatory element leading to epigenomic and transcriptomic variations," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    15. Gayan I. Balasooriya & David L. Spector, 2022. "Allele-specific differential regulation of monoallelically expressed autosomal genes in the cardiac lineage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Shuxiang Li & Tiejun Wei & Anna R. Panchenko, 2023. "Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Natalia Benetti & Quentin Gouil & Andres Tapia del Fierro & Tamara Beck & Kelsey Breslin & Andrew Keniry & Edwina McGlinn & Marnie E. Blewitt, 2022. "Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Wenmin Sun & Dan Xiong & Jiamin Ouyang & Xueshan Xiao & Yi Jiang & Yingwei Wang & Shiqiang Li & Ziying Xie & Junwen Wang & Zhonghui Tang & Qingjiong Zhang, 2024. "Altered chromatin topologies caused by balanced chromosomal translocation lead to central iris hypoplasia," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    20. Xinru Zhang & Bohao Fang & Yi-Fei Huang, 2023. "Transcription factor binding sites are frequently under accelerated evolution in primates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39924-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.