IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v547y2017i7664d10.1038_nature23262.html
   My bibliography  Save this article

Maternal H3K27me3 controls DNA methylation-independent imprinting

Author

Listed:
  • Azusa Inoue

    (Howard Hughes Medical Institute, Boston Children’s Hospital
    Program in Cellular and Molecular Medicine, Boston Children’s Hospital
    Boston Children’s Hospital)

  • Lan Jiang

    (Howard Hughes Medical Institute, Boston Children’s Hospital
    Program in Cellular and Molecular Medicine, Boston Children’s Hospital
    Boston Children’s Hospital)

  • Falong Lu

    (Howard Hughes Medical Institute, Boston Children’s Hospital
    Program in Cellular and Molecular Medicine, Boston Children’s Hospital
    Boston Children’s Hospital
    Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Tsukasa Suzuki

    (Howard Hughes Medical Institute, Boston Children’s Hospital
    Program in Cellular and Molecular Medicine, Boston Children’s Hospital
    Boston Children’s Hospital)

  • Yi Zhang

    (Howard Hughes Medical Institute, Boston Children’s Hospital
    Program in Cellular and Molecular Medicine, Boston Children’s Hospital
    Boston Children’s Hospital
    Harvard Medical School)

Abstract

Mammalian sperm and oocytes have different epigenetic landscapes and are organized in different fashions. After fertilization, the initially distinct parental epigenomes become largely equalized with the exception of certain loci, including imprinting control regions. How parental chromatin becomes equalized and how imprinting control regions escape from this reprogramming is largely unknown. Here we profile parental allele-specific DNase I hypersensitive sites in mouse zygotes and morula embryos, and investigate the epigenetic mechanisms underlying these allelic sites. Integrated analyses of DNA methylome and tri-methylation at lysine 27 of histone H3 (H3K27me3) chromatin immunoprecipitation followed by sequencing identify 76 genes with paternal allele-specific DNase I hypersensitive sites that are devoid of DNA methylation but harbour maternal allele-specific H3K27me3. Interestingly, these genes are paternally expressed in preimplantation embryos, and ectopic removal of H3K27me3 induces maternal allele expression. H3K27me3-dependent imprinting is largely lost in the embryonic cell lineage, but at least five genes maintain their imprinted expression in the extra-embryonic cell lineage. The five genes include all paternally expressed autosomal imprinted genes previously demonstrated to be independent of oocyte DNA methylation. Thus, our study identifies maternal H3K27me3 as a DNA methylation-independent imprinting mechanism.

Suggested Citation

  • Azusa Inoue & Lan Jiang & Falong Lu & Tsukasa Suzuki & Yi Zhang, 2017. "Maternal H3K27me3 controls DNA methylation-independent imprinting," Nature, Nature, vol. 547(7664), pages 419-424, July.
  • Handle: RePEc:nat:nature:v:547:y:2017:i:7664:d:10.1038_nature23262
    DOI: 10.1038/nature23262
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature23262
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature23262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqing Nie & Qianhua Xu & Chengpeng Xu & Fengling Chen & Qizhi Wang & Dandan Qin & Rui Wang & Zheng Gao & Xukun Lu & Xinai Yang & Yu Wu & Chen Gu & Wei Xie & Lei Li, 2023. "Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Natalia Benetti & Quentin Gouil & Andres Tapia del Fierro & Tamara Beck & Kelsey Breslin & Andrew Keniry & Edwina McGlinn & Marnie E. Blewitt, 2022. "Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Seiichi Yano & Takashi Ishiuchi & Shusaku Abe & Satoshi H. Namekawa & Gang Huang & Yoshihiro Ogawa & Hiroyuki Sasaki, 2022. "Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Gayan I. Balasooriya & David L. Spector, 2022. "Allele-specific differential regulation of monoallelically expressed autosomal genes in the cardiac lineage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Mathew Pette & Andrew Dimond & António M. Galvão & Steven J. Millership & Wilson To & Chiara Prodani & Gráinne McNamara & Ludovica Bruno & Alessandro Sardini & Zoe Webster & James McGinty & Paul M. W., 2022. "Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Jiang Zhu & Kang Chen & Yu H. Sun & Wen Ye & Juntao Liu & Dandan Zhang & Nan Su & Li Wu & Xiaochen Kou & Yanhong Zhao & Hong Wang & Shaorong Gao & Lan Kang, 2023. "LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:547:y:2017:i:7664:d:10.1038_nature23262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.