IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32141-2.html
   My bibliography  Save this article

Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes

Author

Listed:
  • Seiichi Yano

    (Kyushu University
    Kyushu University)

  • Takashi Ishiuchi

    (Kyushu University
    University of Yamanashi)

  • Shusaku Abe

    (Kyushu University)

  • Satoshi H. Namekawa

    (University of California Davis)

  • Gang Huang

    (UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine)

  • Yoshihiro Ogawa

    (Kyushu University)

  • Hiroyuki Sasaki

    (Kyushu University)

Abstract

Establishment of the DNA methylation landscape of mammalian oocytes, mediated by the DNMT3A-DNMT3L complex, is crucial for reproduction and development. In mouse oocytes, high levels of DNA methylation occur exclusively in the transcriptionally active regions, with moderate to low levels of methylation in other regions. Histone H3K36me3 mediates the high levels of methylation in the transcribed regions; however, it is unknown which histone mark guides the methylation in the other regions. Here, we show that, in mouse oocytes, H3K36me2 is highly enriched in the X chromosome and is broadly distributed across all autosomes. Upon H3K36me2 depletion, DNA methylation in moderately methylated regions is selectively affected, and a methylation pattern unique to the X chromosome is switched to an autosome-like pattern. Furthermore, we find that simultaneous depletion of H3K36me2 and H3K36me3 results in global hypomethylation, comparable to that of DNMT3A depletion. Therefore, the two histone marks jointly provide the chromatin platform essential for guiding DNMT3A-dependent DNA methylation in mouse oocytes.

Suggested Citation

  • Seiichi Yano & Takashi Ishiuchi & Shusaku Abe & Satoshi H. Namekawa & Gang Huang & Yoshihiro Ogawa & Hiroyuki Sasaki, 2022. "Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32141-2
    DOI: 10.1038/s41467-022-32141-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32141-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32141-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xue Guo & Ling Wang & Jie Li & Zhanyu Ding & Jianxiong Xiao & Xiaotong Yin & Shuang He & Pan Shi & Liping Dong & Guohong Li & Changlin Tian & Jiawei Wang & Yao Cong & Yanhui Xu, 2015. "Structural insight into autoinhibition and histone H3-induced activation of DNMT3A," Nature, Nature, vol. 517(7536), pages 640-644, January.
    2. Daniel N. Weinberg & Simon Papillon-Cavanagh & Haifen Chen & Yuan Yue & Xiao Chen & Kartik N. Rajagopalan & Cynthia Horth & John T. McGuire & Xinjing Xu & Hamid Nikbakht & Agata E. Lemiesz & Dylan M. , 2019. "The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape," Nature, Nature, vol. 573(7773), pages 281-286, September.
    3. Lenan Zhuang & Younghoon Jang & Young-Kwon Park & Ji-Eun Lee & Shalini Jain & Eugene Froimchuk & Aaron Broun & Chengyu Liu & Oksana Gavrilova & Kai Ge, 2018. "Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    4. S. Choufani & C. Cytrynbaum & B. H. Y. Chung & A. L. Turinsky & D. Grafodatskaya & Y. A. Chen & A. S. A. Cohen & L. Dupuis & D. T. Butcher & M. T. Siu & H. M. Luk & I. F. M. Lo & S. T. S. Lam & O. Cal, 2015. "NSD1 mutations generate a genome-wide DNA methylation signature," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    5. David N. Ciccone & Hui Su & Sarah Hevi & Frédérique Gay & Hong Lei & Jeffrey Bajko & Guoliang Xu & En Li & Taiping Chen, 2009. "KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints," Nature, Nature, vol. 461(7262), pages 415-418, September.
    6. Azusa Inoue & Lan Jiang & Falong Lu & Tsukasa Suzuki & Yi Zhang, 2017. "Maternal H3K27me3 controls DNA methylation-independent imprinting," Nature, Nature, vol. 547(7664), pages 419-424, July.
    7. Masahiro Kaneda & Masaki Okano & Kenichiro Hata & Takashi Sado & Naomi Tsujimoto & En Li & Hiroyuki Sasaki, 2004. "Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting," Nature, Nature, vol. 429(6994), pages 900-903, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yafei Jiang & Jinzeng Wang & Mengxiong Sun & Dongqing Zuo & Hongsheng Wang & Jiakang Shen & Wenyan Jiang & Haoran Mu & Xiaojun Ma & Fei Yin & Jun Lin & Chongren Wang & Shuting Yu & Lu Jiang & Gang Lv , 2022. "Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Mathew Pette & Andrew Dimond & António M. Galvão & Steven J. Millership & Wilson To & Chiara Prodani & Gráinne McNamara & Ludovica Bruno & Alessandro Sardini & Zoe Webster & James McGinty & Paul M. W., 2022. "Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Athmane Teghanemt & Priyanjali Pulipati & Kara Misel-Wuchter & Kenneth Day & Matthew S. Yorek & Ren Yi & Henry L. Keen & Christy Au & Thorsten Maretzky & Prajwal Gurung & Dan R. Littman & Priya D. Iss, 2022. "CD4 expression in effector T cells depends on DNA demethylation over a developmentally established stimulus-responsive element," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Warren A. Cheung & Adam F. Johnson & William J. Rowell & Emily Farrow & Richard Hall & Ana S. A. Cohen & John C. Means & Tricia N. Zion & Daniel M. Portik & Christopher T. Saunders & Boryana Koseva & , 2023. "Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Xiaoqing Nie & Qianhua Xu & Chengpeng Xu & Fengling Chen & Qizhi Wang & Dandan Qin & Rui Wang & Zheng Gao & Xukun Lu & Xinai Yang & Yu Wu & Chen Gu & Wei Xie & Lei Li, 2023. "Maternal TDP-43 interacts with RNA Pol II and regulates zygotic genome activation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Gayan I. Balasooriya & David L. Spector, 2022. "Allele-specific differential regulation of monoallelically expressed autosomal genes in the cardiac lineage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Fenfen Li & Jia Jing & Miranda Movahed & Xin Cui & Qiang Cao & Rui Wu & Ziyue Chen & Liqing Yu & Yi Pan & Huidong Shi & Hang Shi & Bingzhong Xue, 2021. "Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    13. Natalia Benetti & Quentin Gouil & Andres Tapia del Fierro & Tamara Beck & Kelsey Breslin & Andrew Keniry & Edwina McGlinn & Marnie E. Blewitt, 2022. "Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    15. Ko Sato & Amarjeet Kumar & Keisuke Hamada & Chikako Okada & Asako Oguni & Ayumi Machiyama & Shun Sakuraba & Tomohiro Nishizawa & Osamu Nureki & Hidetoshi Kono & Kazuhiro Ogata & Toru Sengoku, 2021. "Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Qing Li & Jiansen Lu & Xidi Yin & Yunjian Chang & Chao Wang & Meng Yan & Li Feng & Yanbo Cheng & Yun Gao & Beiying Xu & Yao Zhang & Yingyi Wang & Guizhong Cui & Luang Xu & Yidi Sun & Rong Zeng & Yixue, 2023. "Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Jiang Zhu & Kang Chen & Yu H. Sun & Wen Ye & Juntao Liu & Dandan Zhang & Nan Su & Li Wu & Xiaochen Kou & Yanhong Zhao & Hong Wang & Shaorong Gao & Lan Kang, 2023. "LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Kentaro Mochizuki & Jafar Sharif & Kenjiro Shirane & Kousuke Uranishi & Aaron B. Bogutz & Sanne M. Janssen & Ayumu Suzuki & Akihiko Okuda & Haruhiko Koseki & Matthew C. Lorincz, 2021. "Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32141-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.