IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35933-2.html
   My bibliography  Save this article

A non-academic perspective on the future of lithium-based batteries

Author

Listed:
  • James T. Frith

    (Volta Energy Technologies)

  • Matthew J. Lacey

    (Scania CV AB)

  • Ulderico Ulissi

    (Sphere Energy SAS)

Abstract

In the field of lithium-based batteries, there is often a substantial divide between academic research and industrial market needs. This is in part driven by a lack of peer-reviewed publications from industry. Here we present a non-academic view on applied research in lithium-based batteries to sharpen the focus and help bridge the gap between academic and industrial research. We focus our discussion on key metrics and challenges to be considered when developing new technologies in this industry. We also explore the need to consider various performance aspects in unison when developing a new material/technology. Moreover, we also investigate the suitability of supply chains, sustainability of materials and the impact on system-level cost as factors that need to be accounted for when working on new technologies. With these considerations in mind, we then assess the latest developments in the lithium-based battery industry, providing our views on the challenges and prospects of various technologies.

Suggested Citation

  • James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35933-2
    DOI: 10.1038/s41467-023-35933-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35933-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35933-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giorgia Zampardi & Fabio La Mantia, 2022. "Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    2. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    3. A. J. Louli & A. Eldesoky & Rochelle Weber & M. Genovese & Matt Coon & Jack deGooyer & Zhe Deng & R. T. White & Jaehan Lee & Thomas Rodgers & R. Petibon & S. Hy & Shawn J. H. Cheng & J. R. Dahn, 2020. "Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis," Nature Energy, Nature, vol. 5(9), pages 693-702, September.
    4. Simon Randau & Dominik A. Weber & Olaf Kötz & Raimund Koerver & Philipp Braun & André Weber & Ellen Ivers-Tiffée & Torben Adermann & Jörn Kulisch & Wolfgang G. Zeier & Felix H. Richter & Jürgen Janek, 2020. "Benchmarking the performance of all-solid-state lithium batteries," Nature Energy, Nature, vol. 5(3), pages 259-270, March.
    5. Jing Xie & Yi-Chun Lu, 2020. "A retrospective on lithium-ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    6. Jun Liu & Zhenan Bao & Yi Cui & Eric J. Dufek & John B. Goodenough & Peter Khalifah & Qiuyan Li & Bor Yann Liaw & Ping Liu & Arumugam Manthiram & Y. Shirley Meng & Venkat R. Subramanian & Michael F. T, 2019. "Pathways for practical high-energy long-cycling lithium metal batteries," Nature Energy, Nature, vol. 4(3), pages 180-186, March.
    7. Richard Schmuch & Ralf Wagner & Gerhard Hörpel & Tobias Placke & Martin Winter, 2018. "Performance and cost of materials for lithium-based rechargeable automotive batteries," Nature Energy, Nature, vol. 3(4), pages 267-278, April.
    8. Sebastian Pohlmann, 2022. "Metrics and methods for moving from research to innovation in energy storage," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    9. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    10. Paul Albertus & Susan Babinec & Scott Litzelman & Aron Newman, 2018. "Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries," Nature Energy, Nature, vol. 3(1), pages 16-21, January.
    11. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    12. Jelena Popovic, 2021. "The importance of electrode interfaces and interphases for rechargeable metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    13. Mateusz Odziomek & Frédéric Chaput & Anna Rutkowska & Konrad Świerczek & Danuta Olszewska & Maciej Sitarz & Frédéric Lerouge & Stephane Parola, 2017. "Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    14. Jim Motavalli, 2015. "Technology: A solid future," Nature, Nature, vol. 526(7575), pages 96-97, October.
    15. Kent J. Griffith & Kamila M. Wiaderek & Giannantonio Cibin & Lauren E. Marbella & Clare P. Grey, 2018. "Niobium tungsten oxides for high-rate lithium-ion energy storage," Nature, Nature, vol. 559(7715), pages 556-563, July.
    16. Ruoqian Lin & Seong-Min Bak & Youngho Shin & Rui Zhang & Chunyang Wang & Kim Kisslinger & Mingyuan Ge & Xiaojing Huang & Zulipiya Shadike & Ajith Pattammattel & Hanfei Yan & Yong Chu & Jinpeng Wu & Wa, 2021. "Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. William E. Gent & Grace M. Busse & Kurt Z. House, 2022. "The predicted persistence of cobalt in lithium-ion batteries," Nature Energy, Nature, vol. 7(12), pages 1132-1143, December.
    18. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    19. Kostiantyn Turcheniuk & Dmitry Bondarev & Vinod Singhal & Gleb Yushin, 2018. "Ten years left to redesign lithium-ion batteries," Nature, Nature, vol. 559(7715), pages 467-470, July.
    20. Xiao-Guang Yang & Teng Liu & Chao-Yang Wang, 2021. "Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles," Nature Energy, Nature, vol. 6(2), pages 176-185, February.
    21. Gebrekidan Gebresilassie Eshetu & Heng Zhang & Xabier Judez & Henry Adenusi & Michel Armand & Stefano Passerini & Egbert Figgemeier, 2021. "Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    22. Fabian Duffner & Niklas Kronemeyer & Jens Tübke & Jens Leker & Martin Winter & Richard Schmuch, 2021. "Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure," Nature Energy, Nature, vol. 6(2), pages 123-134, February.
    23. Chaojiang Niu & Hongkyung Lee & Shuru Chen & Qiuyan Li & Jason Du & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2019. "High-energy lithium metal pouch cells with limited anode swelling and long stable cycles," Nature Energy, Nature, vol. 4(7), pages 551-559, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lander Lizaso & Idoia Urdampilleta & Miguel Bengoechea & Iker Boyano & Hans-Jürgen Grande & Imanol Landa-Medrano & Aitor Eguia-Barrio & Iratxe de Meatza, 2023. "Waterborne LiNi 0.5 Mn 1.5 O 4 Cathode Formulation Optimization through Design of Experiments and Upscaling to 1 Ah Li-Ion Pouch Cells," Energies, MDPI, vol. 16(21), pages 1-18, October.
    2. Dominik Emmel & Simon Kunz & Nick Blume & Yongchai Kwon & Thomas Turek & Christine Minke & Daniel Schröder, 2023. "Benchmarking organic active materials for aqueous redox flow batteries in terms of lifetime and cost," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
    4. Steffen Link & Annegret Stephan & Daniel Speth & Patrick Plötz, 2024. "Rapidly declining costs of truck batteries and fuel cells enable large-scale road freight electrification," Nature Energy, Nature, vol. 9(8), pages 1032-1039, August.
    5. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Shobhan Dhir & Ben Jagger & Alen Maguire & Mauro Pasta, 2023. "Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.
    12. Ghorbani, Yousef & Zhang, Steven E. & Bourdeau, Julie E. & Chipangamate, Nelson S. & Rose, Derek H. & Valodia, Imraan & Nwaila, Glen T., 2024. "The strategic role of lithium in the green energy transition: Towards an OPEC-style framework for green energy-mineral exporting countries (GEMEC)," Resources Policy, Elsevier, vol. 90(C).
    13. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Shobhan Dhir & John Cattermull & Ben Jagger & Maximilian Schart & Lorenz F. Olbrich & Yifan Chen & Junyi Zhao & Krishnakanth Sada & Andrew Goodwin & Mauro Pasta, 2024. "Characterisation and modelling of potassium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    3. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Wesselkämper, Jannis & Dahrendorf, Laureen & Mauler, Lukas & Lux, Simon & von Delft, Stephan, 2024. "Towards circular battery supply chains: Strategies to reduce material demand and the impact on mining and recycling," Resources Policy, Elsevier, vol. 95(C).
    5. Burak Aktekin & Luise M. Riegger & Svenja-K. Otto & Till Fuchs & Anja Henss & Jürgen Janek, 2023. "SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    8. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Guinevere A. Giffin, 2022. "The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    13. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Artur Kozłowski & Łukasz Bołoz, 2021. "Design and Research on Power Systems and Algorithms for Controlling Electric Underground Mining Machines Powered by Batteries," Energies, MDPI, vol. 14(13), pages 1-21, July.
    15. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    18. Jun Ma & Junxiong Wang & Kai Jia & Zheng Liang & Guanjun Ji & Haocheng Ji & Yanfei Zhu & Wen Chen & Hui-Ming Cheng & Guangmin Zhou, 2024. "Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Natalie D. Popovich & Deepak Rajagopal & Elif Tasar & Amol Phadke, 2021. "Economic, environmental and grid-resilience benefits of converting diesel trains to battery-electric," Nature Energy, Nature, vol. 6(11), pages 1017-1025, November.
    20. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35933-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.