IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39384-7.html
   My bibliography  Save this article

Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes

Author

Listed:
  • Jiyu Zhang

    (Zhengzhou University)

  • Yongliang Yan

    (Zhengzhou University)

  • Xin Wang

    (Zhengzhou University)

  • Yanyan Cui

    (Karlsruhe Institute of Technology (KIT))

  • Zhengfeng Zhang

    (Beijing University of Technology)

  • Sen Wang

    (Zhengzhou University)

  • Zhengkun Xie

    (Zhengzhou University)

  • Pengfei Yan

    (Beijing University of Technology)

  • Weihua Chen

    (Zhengzhou University)

Abstract

Non-aqueous sodium-ion batteries (SiBs) are a viable electrochemical energy storage system for grid storage. However, the practical development of SiBs is hindered mainly by the sluggish kinetics and interfacial instability of positive-electrode active materials, such as polyanion-type iron-based sulfates, at high voltage. Here, to circumvent these issues, we proposed the multiscale interface engineering of Na2.26Fe1.87(SO4)3, where bulk heterostructure and exposed crystal plane were tuned to improve the Na-ion storage performance. Physicochemical characterizations and theoretical calculations suggested that the heterostructure of Na6Fe(SO4)4 phase facilitated ionic kinetics by densifying Na-ion migration channels and lowering energy barriers. The (11-2) plane of Na2.26Fe1.87(SO4)3 promoted the adsorption of the electrolyte solution ClO4− anions and fluoroethylene carbonate molecules, which formed an inorganic-rich Na-ion conductive interphase at the positive electrode. When tested in combination with a presodiated FeS/carbon-based negative electrode in laboratory- scale single-layer pouch cell configuration, the Na2.26Fe1.87(SO4)3-based positive electrode enables an initial discharge capacity of about 83.9 mAh g−1, an average cell discharge voltage of 2.35 V and a specific capacity retention of around 97% after 40 cycles at 24 mA g−1 and 25 °C.

Suggested Citation

  • Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39384-7
    DOI: 10.1038/s41467-023-39384-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39384-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39384-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Jin & Phung M. L. Le & Peiyuan Gao & Yaobin Xu & Biwei Xiao & Mark H. Engelhard & Xia Cao & Thanh D. Vo & Jiangtao Hu & Lirong Zhong & Bethany E. Matthews & Ran Yi & Chongmin Wang & Xiaolin Li & J, 2022. "Low-solvation electrolytes for high-voltage sodium-ion batteries," Nature Energy, Nature, vol. 7(8), pages 718-725, August.
    2. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yuqi Li & Quan Zhou & Suting Weng & Feixiang Ding & Xingguo Qi & Jiaze Lu & Yu Li & Xiao Zhang & Xiaohui Rong & Yaxiang Lu & Xuefeng Wang & Ruijuan Xiao & Hong Li & Xuejie Huang & Liquan Chen & Yong-S, 2022. "Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries," Nature Energy, Nature, vol. 7(6), pages 511-519, June.
    4. Xing Shen & Quan Zhou & Miao Han & Xingguo Qi & Bo Li & Qiangqiang Zhang & Junmei Zhao & Chao Yang & Huizhou Liu & Yong-Sheng Hu, 2021. "Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ji Chen & Xiulin Fan & Qin Li & Hongbin Yang & M. Reza Khoshi & Yaobin Xu & Sooyeon Hwang & Long Chen & Xiao Ji & Chongyin Yang & Huixin He & Chongmin Wang & Eric Garfunkel & Dong Su & Oleg Borodin & , 2020. "Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries," Nature Energy, Nature, vol. 5(5), pages 386-397, May.
    6. Sha Tan & Zulipiya Shadike & Jizhou Li & Xuelong Wang & Yang Yang & Ruoqian Lin & Arthur Cresce & Jiangtao Hu & Adrian Hunt & Iradwikanari Waluyo & Lu Ma & Federico Monaco & Peter Cloetens & Jie Xiao , 2022. "Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V," Nature Energy, Nature, vol. 7(6), pages 484-494, June.
    7. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Zhang & Yingjie Wang & Wei Zhao & Pengjian Zuo & Yujin Tong & Geping Yin & Tong Zhu & Shuaifeng Lou, 2024. "Delocalized electronic engineering of TiNb2O7 enables low temperature capability for high-areal-capacity lithium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuo Li & Rui Yu & Suting Weng & Qinghua Zhang & Xuefeng Wang & Xin Guo, 2023. "Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Qingyuan Li & Jen-Hung Fang & Wenyuan Li & Xingbo Liu, 2022. "Novel Materials and Advanced Characterization for Energy Storage and Conversion," Energies, MDPI, vol. 15(20), pages 1-3, October.
    6. Chengbin Jin & Yiyu Huang & Lanhang Li & Guoying Wei & Hongyan Li & Qiyao Shang & Zhijin Ju & Gongxun Lu & Jiale Zheng & Ouwei Sheng & Xinyong Tao, 2023. "A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Chutao Wang & Zongqiang Sun & Yaqing Liu & Lin Liu & Xiaoting Yin & Qing Hou & Jingmin Fan & Jiawei Yan & Ruming Yuan & Mingsen Zheng & Quanfeng Dong, 2024. "A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.
    9. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Xu Yang & Bao Zhang & Yao Tian & Yao Wang & Zhiqiang Fu & Dong Zhou & Hao Liu & Feiyu Kang & Baohua Li & Chunsheng Wang & Guoxiu Wang, 2023. "Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Meilong Wang & Luming Yin & Mengting Zheng & Xiaowei Liu & Chao Yang & Wenxi Hu & Jingjing Xie & Ruitao Sun & Jin Han & Ya You & Jun Lu, 2024. "Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Shobhan Dhir & Ben Jagger & Alen Maguire & Mauro Pasta, 2023. "Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Daiwei Wang & Li-Ji Jhang & Rong Kou & Meng Liao & Shiyao Zheng & Heng Jiang & Pei Shi & Guo-Xing Li & Kui Meng & Donghai Wang, 2023. "Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Ziyu Song & Fangfang Chen & Maria Martinez-Ibañez & Wenfang Feng & Maria Forsyth & Zhibin Zhou & Michel Armand & Heng Zhang, 2023. "A reflection on polymer electrolytes for solid-state lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
    17. Guoyu Qian & Yiwei Li & Haibiao Chen & Lin Xie & Tongchao Liu & Ni Yang & Yongli Song & Cong Lin & Junfang Cheng & Naotoshi Nakashima & Meng Zhang & Zikun Li & Wenguang Zhao & Xiangjie Yang & Hai Lin , 2023. "Revealing the aging process of solid electrolyte interphase on SiOx anode," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Junbo Zhang & Haikuo Zhang & Suting Weng & Ruhong Li & Di Lu & Tao Deng & Shuoqing Zhang & Ling Lv & Jiacheng Qi & Xuezhang Xiao & Liwu Fan & Shujiang Geng & Fuhui Wang & Lixin Chen & Malachi Noked & , 2023. "Multifunctional solvent molecule design enables high-voltage Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Lander Lizaso & Idoia Urdampilleta & Miguel Bengoechea & Iker Boyano & Hans-Jürgen Grande & Imanol Landa-Medrano & Aitor Eguia-Barrio & Iratxe de Meatza, 2023. "Waterborne LiNi 0.5 Mn 1.5 O 4 Cathode Formulation Optimization through Design of Experiments and Upscaling to 1 Ah Li-Ion Pouch Cells," Energies, MDPI, vol. 16(21), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39384-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.