IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32192-5.html
   My bibliography  Save this article

Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery

Author

Listed:
  • Junyeob Moon

    (Seoul National University)

  • Dong Ok Kim

    (Seoul National University
    Swarthmore College)

  • Lieven Bekaert

    (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)

  • Munsoo Song

    (Seoul National University)

  • Jinkyu Chung

    (Seoul National University)

  • Danwon Lee

    (Seoul National University)

  • Annick Hubin

    (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)

  • Jongwoo Lim

    (Seoul National University
    Seoul National University)

Abstract

The growth of dendrites on lithium metal electrodes is problematic because it causes irreversible capacity loss and safety hazards. Localised high-concentration electrolytes (LHCEs) can form a mechanically stable solid-electrolyte interphase and prevent uneven growth of lithium metal. However, the optimal physicochemical properties of LHCEs have not been clearly determined which limits the choice to fluorinated non-solvating cosolvents (FNSCs). Also, FNSCs in LHCEs raise environmental concerns, are costly, and may cause low cathodic stability owing to their low lowest unoccupied molecular orbital level, leading to unsatisfactory cycle life. Here, we spectroscopically measured the Li+ solvation ability and miscibility of candidate non-fluorinated non-solvating cosolvents (NFNSCs) and identified the suitable physicochemical properties for non-solvating cosolvents. Using our design principle, we proposed NFNSCs that deliver a coulombic efficiency up to 99.0% over 1400 cycles. NMR spectra revealed that the designed NFNSCs were highly stable in electrolytes during extended cycles. In addition, solvation structure analysis by Raman spectroscopy and theoretical calculation of Li+ binding energy suggested that the low ability of these NFNSCs to solvate Li+ originates from the aromatic ring that allows delocalisation of electron pairs on the oxygen atom.

Suggested Citation

  • Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32192-5
    DOI: 10.1038/s41467-022-32192-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32192-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32192-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. J. Louli & A. Eldesoky & Rochelle Weber & M. Genovese & Matt Coon & Jack deGooyer & Zhe Deng & R. T. White & Jaehan Lee & Thomas Rodgers & R. Petibon & S. Hy & Shawn J. H. Cheng & J. R. Dahn, 2020. "Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis," Nature Energy, Nature, vol. 5(9), pages 693-702, September.
    2. Paul Albertus & Susan Babinec & Scott Litzelman & Aron Newman, 2018. "Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries," Nature Energy, Nature, vol. 3(1), pages 16-21, January.
    3. Yuki Yamada & Jianhui Wang & Seongjae Ko & Eriko Watanabe & Atsuo Yamada, 2019. "Advances and issues in developing salt-concentrated battery electrolytes," Nature Energy, Nature, vol. 4(4), pages 269-280, April.
    4. Chaojiang Niu & Dianying Liu & Joshua A. Lochala & Cassidy S. Anderson & Xia Cao & Mark E. Gross & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2021. "Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries," Nature Energy, Nature, vol. 6(7), pages 723-732, July.
    5. Chaojiang Niu & Hongkyung Lee & Shuru Chen & Qiuyan Li & Jason Du & Wu Xu & Ji-Guang Zhang & M. Stanley Whittingham & Jie Xiao & Jun Liu, 2019. "High-energy lithium metal pouch cells with limited anode swelling and long stable cycles," Nature Energy, Nature, vol. 4(7), pages 551-559, July.
    6. Chengcheng Fang & Bingyu Lu & Gorakh Pawar & Minghao Zhang & Diyi Cheng & Shuru Chen & Miguel Ceja & Jean-Marie Doux & Henry Musrock & Mei Cai & Boryann Liaw & Ying Shirley Meng, 2021. "Pressure-tailored lithium deposition and dissolution in lithium metal batteries," Nature Energy, Nature, vol. 6(10), pages 987-994, October.
    7. Liumin Suo & Yong-Sheng Hu & Hong Li & Michel Armand & Liquan Chen, 2013. "A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yanhua Zhang & Rui Qiao & Qiaona Nie & Peiyu Zhao & Yong Li & Yunfei Hong & Shengjie Chen & Chao Li & Baoyu Sun & Hao Fan & Junkai Deng & Jingying Xie & Feng Liu & Jiangxuan Song, 2024. "Synergetic regulation of SEI mechanics and crystallographic orientation for stable lithium metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Minglei Mao & Xiao Ji & Qiyu Wang & Zejing Lin & Meiying Li & Tao Liu & Chengliang Wang & Yong-Sheng Hu & Hong Li & Xuejie Huang & Liquan Chen & Liumin Suo, 2023. "Anion-enrichment interface enables high-voltage anode-free lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Hyeokjin Kwon & Hongsin Kim & Jaemin Hwang & Wonsik Oh & Youngil Roh & Dongseok Shin & Hee-Tak Kim, 2024. "Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion," Nature Energy, Nature, vol. 9(1), pages 57-69, January.
    10. Ziyang Lu & Huijun Yang & Jianming Sun & Jun Okagaki & Yoongkee Choe & Eunjoo Yoo, 2024. "Conformational isomerism breaks the electrolyte solubility limit and stabilizes 4.9 V Ni-rich layered cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yuxiang Xie & Yixin Huang & Yinggan Zhang & Tairui Wu & Shishi Liu & Miaolan Sun & Bruce Lee & Zhen Lin & Hui Chen & Peng Dai & Zheng Huang & Jian Yang & Chenguang Shi & Deyin Wu & Ling Huang & Yingji, 2023. "Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Zhuangzhuang Cui & Zhuangzhuang Jia & Digen Ruan & Qingshun Nian & Jiajia Fan & Shunqiang Chen & Zixu He & Dazhuang Wang & Jinyu Jiang & Jun Ma & Xing Ou & Shuhong Jiao & Qingsong Wang & Xiaodi Ren, 2024. "Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    16. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Guinevere A. Giffin, 2022. "The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    18. Chutao Wang & Zongqiang Sun & Yaqing Liu & Lin Liu & Xiaoting Yin & Qing Hou & Jingmin Fan & Jiawei Yan & Ruming Yuan & Mingsen Zheng & Quanfeng Dong, 2024. "A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Zhixin Xu & Xiyue Zhang & Jun Yang & Xuzixu Cui & Yanna Nuli & Jiulin Wang, 2024. "High-voltage and intrinsically safe electrolytes for Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32192-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.