IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37642-2.html
   My bibliography  Save this article

Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte

Author

Listed:
  • Chen Xu

    (Hunan University)

  • Chengjun Lei

    (Hunan University)

  • Jinye Li

    (Hunan University)

  • Xin He

    (Hunan University)

  • Pengjie Jiang

    (Hunan University)

  • Huijian Wang

    (Hunan University)

  • Tingting Liu

    (Hunan University)

  • Xiao Liang

    (Hunan University)

Abstract

The zinc-copper redox couple exhibits several merits, which motivated us to reconstruct the rechargeable Daniell cell by combining chloride shuttle chemistry in a zinc chloride-based aqueous/organic biphasic electrolyte. An ion-selective interface was established to restrict the copper ions in the aqueous phase while ensuring chloride transfer. We demonstrated that the copper-water-chloro solvation complexes are the descriptors, which are predominant in aqueous solutions with optimized concentrations of zinc chloride; thus, copper crossover is prevented. Without this prevention, the copper ions are mostly in the hydration state and exhibit high spontaneity to be solvated in the organic phase. The zinc-copper cell delivers a highly reversible capacity of 395 mAh g−1 with nearly 100% coulombic efficiency, affording a high energy density of 380 Wh kg−1 based on the copper chloride mass. The proposed battery chemistry is expandable to other metal chlorides, which widens the cathode materials available for aqueous chloride ion batteries.

Suggested Citation

  • Chen Xu & Chengjun Lei & Jinye Li & Xin He & Pengjie Jiang & Huijian Wang & Tingting Liu & Xiao Liang, 2023. "Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37642-2
    DOI: 10.1038/s41467-023-37642-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37642-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37642-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Crabtree, 2015. "Perspective: The energy-storage revolution," Nature, Nature, vol. 526(7575), pages 92-92, October.
    2. Jing Xie & Yi-Chun Lu, 2020. "A retrospective on lithium-ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    3. Fabian Duffner & Niklas Kronemeyer & Jens Tübke & Jens Leker & Martin Winter & Richard Schmuch, 2021. "Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure," Nature Energy, Nature, vol. 6(2), pages 123-134, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanhe Sun & Rui Qi & Qi Lei & Wei Zhang & Haitao Li & Mengru Lin & Hao Shi & Jianrong Zeng & Wen Wen & Yi Gao & Xiaolong Li & Chunyi Zhi & Daming Zhu, 2025. "Reversible multivalent carrier redox exceeding intercalation capacity boundary," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Xiangyong Zhang & Hua Wei & Shizhen Li & Baohui Ren & Jingjing Jiang & Guangmeng Qu & Haiming Lv & Guojin Liang & Guangming Chen & Chunyi Zhi & Hongfei Li & Zhuoxin Liu, 2023. "Manipulating coordination environment for a high-voltage aqueous copper-chlorine battery," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Guinevere A. Giffin, 2022. "The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Jin, Haiyan & Ru, Rui & Cai, Lei & Meng, Jinhao & Wang, Bin & Peng, Jichang & Yang, Shengxiang, 2025. "A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries," Applied Energy, Elsevier, vol. 377(PD).
    4. José Manuel Andújar & Francisca Segura & Jesús Rey & Francisco José Vivas, 2022. "Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option," Energies, MDPI, vol. 15(17), pages 1-32, August.
    5. Ma, Chen & Chang, Long & Cui, Naxin & Duan, Bin & Zhang, Yulong & Yu, Zhihao, 2022. "Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization," Energy, Elsevier, vol. 257(C).
    6. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Yang, Yang & Xing, Kai & Yan, Minyue & Zhu, Xun & Ye, Dingding & Chen, Rong & Liao, Qiang, 2023. "A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol," Energy, Elsevier, vol. 265(C).
    9. Chen, Mingyi & Zhu, Minghao & Zhao, Luyao & Chen, Yin, 2024. "Study on thermal runaway propagation inhibition of battery module by flame-retardant phase change material combined with aerogel felt," Applied Energy, Elsevier, vol. 367(C).
    10. Yuan, Lingling & Zhou, Qianwen & Li, Ting & Wang, Yikun & Liu, Zhengqing & Chong, Shaokun, 2022. "Promoting superior K-ion storage of Bi2S3 nanorod anode via graphene physicochemical protection and electrolyte stabilization effect," Applied Energy, Elsevier, vol. 322(C).
    11. Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).
    12. Byong-June Lee & Chen Zhao & Jeong-Hoon Yu & Tong-Hyun Kang & Hyean-Yeol Park & Joonhee Kang & Yongju Jung & Xiang Liu & Tianyi Li & Wenqian Xu & Xiao-Bing Zuo & Gui-Liang Xu & Khalil Amine & Jong-Sun, 2022. "Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Gao, Jingqi & Wang, Geng & Luo, Kai H., 2024. "Formation of solid electrolyte interphase in Li-ion batteries: Insights from temperature-accelerated ReaxFF molecular dynamics," Applied Energy, Elsevier, vol. 371(C).
    14. Rodríguez-Iturriaga, Pablo & García, Víctor Manuel & Rodríguez-Bolívar, Salvador & Valdés, Enrique Ernesto & Anseán, David & López-Villanueva, Juan Antonio, 2024. "A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion," Applied Energy, Elsevier, vol. 367(C).
    15. Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
    16. Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).
    17. Yi-Fan Tian & Shuang-Jie Tan & Chunpeng Yang & Yu-Ming Zhao & Di-Xin Xu & Zhuo-Ya Lu & Ge Li & Jin-Yi Li & Xu-Sheng Zhang & Chao-Hui Zhang & Jilin Tang & Yao Zhao & Fuyi Wang & Rui Wen & Quan Xu & Yu-, 2023. "Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    19. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    20. Bolong Hong & Lei Gao & Changping Li & Genming Lai & Jinlong Zhu & Dubin Huang & Yunxing Zuo & Wen Yin & Mengyu Sun & Shusen Zhao & Jiaxin Zheng & Songbai Han & Ruqiang Zou, 2025. "All-solid-state batteries designed for operation under extreme cold conditions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37642-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.