IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030761.html
   My bibliography  Save this article

Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction

Author

Listed:
  • Meng, Jinhao
  • You, Yuqiang
  • Lin, Mingqiang
  • Wu, Ji
  • Song, Zhengxiang

Abstract

Capturing the lifespan trajectory of lithium-ion (Li-ion) batteries in the early stage is critical for the operation and maintenance of battery energy storage systems (BESSs). Recently, data driven model is a promising solution to implement this task, yet the battery's early cycling stage can only provide very limited information in the training phase and the scenarios of the BESS applications are not immutable. To alleviate the above issues, this paper proposes a multi-scenario transferable learning framework with few-shot to predict the Li-ion battery lifespan trajectory. An easily constructed model is chosen to generate various pseudo trajectories from only the full lifespan trajectory of a single cell. Then, a transferred deep learning method integrating the gate recurrent unit (GRU) and one-dimensional convolutional neural network (1D CNN) is proposed to utilize the pseudo curves, whose training ability can be adjusted to a new scenario using simply the first 100 cycling data and a pre-trained strategy. Finally, the proposed framework can accurately predict the whole Li-ion battery aging trajectory for multi-scenarios in two different datasets.

Suggested Citation

  • Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030761
    DOI: 10.1016/j.energy.2023.129682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maosong Fan & Mengmeng Geng & Kai Yang & Mingjie Zhang & Hao Liu, 2023. "State of Health Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Shen, Jiangwei & Ma, Wensai & Shu, Xing & Shen, Shiquan & Chen, Zheng & Liu, Yonggang, 2023. "Accurate state of health estimation for lithium-ion batteries under random charging scenarios," Energy, Elsevier, vol. 279(C).
    4. Zhang, Shuxin & Liu, Zhitao & Su, Hongye, 2023. "State of health estimation for lithium-ion batteries on few-shot learning," Energy, Elsevier, vol. 268(C).
    5. Tian, Jiaqiang & Liu, Xinghua & Li, Siqi & Wei, Zhongbao & Zhang, Xu & Xiao, Gaoxi & Wang, Peng, 2023. "Lithium-ion battery health estimation with real-world data for electric vehicles," Energy, Elsevier, vol. 270(C).
    6. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Ardeshiri, Reza Rouhi & Liu, Ming & Ma, Chengbin, 2022. "Multivariate stacked bidirectional long short term memory for lithium-ion battery health management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    9. Peng, Simin & Sun, Yunxiang & Liu, Dandan & Yu, Quanqing & Kan, Jiarong & Pecht, Michael, 2023. "State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network," Energy, Elsevier, vol. 282(C).
    10. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Li, Xiaoyu & Lyu, Mohan & Li, Kuo & Gao, Xiao & Liu, Caixia & Zhang, Zhaosheng, 2023. "Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning," Energy, Elsevier, vol. 282(C).
    12. Li, Jinwen & Deng, Zhongwei & Liu, Hongao & Xie, Yi & Liu, Chuan & Lu, Chen, 2022. "Battery capacity trajectory prediction by capturing the correlation between different vehicles," Energy, Elsevier, vol. 260(C).
    13. James T. Frith & Matthew J. Lacey & Ulderico Ulissi, 2023. "A non-academic perspective on the future of lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
    2. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2024. "An adaptive and interpretable SOH estimation method for lithium-ion batteries based-on relaxation voltage cross-scale features and multi-LSTM-RFR2," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
    2. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    3. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    4. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    7. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    11. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    12. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    13. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Tang, Aihua & Wu, Xinyu & Xu, Tingting & Hu, Yuanzhi & Long, Shengwen & Yu, Quanqing, 2024. "State of health estimation based on inconsistent evolution for lithium-ion battery module," Energy, Elsevier, vol. 286(C).
    15. Xiong, Xin & Wang, Yujie & Jiang, Cong & Zhang, Xingchen & Xiang, Haoxiang & Chen, Zonghai, 2024. "End-to-end deep learning powered battery state of health estimation considering multi-neighboring incomplete charging data," Energy, Elsevier, vol. 292(C).
    16. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    18. Solmaz Nazaralizadeh & Paramarshi Banerjee & Anurag K. Srivastava & Parviz Famouri, 2024. "Battery Energy Storage Systems: A Review of Energy Management Systems and Health Metrics," Energies, MDPI, vol. 17(5), pages 1-21, March.
    19. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    20. Ma, Yan & Li, Jiaqi & Gao, Jinwu & Chen, Hong, 2024. "State of health prediction of lithium-ion batteries under early partial data based on IWOA-BiLSTM with single feature," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.