IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p7854-7873d53426.html
   My bibliography  Save this article

State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization

Author

Listed:
  • Zhihao Yu

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Ruituo Huai

    (College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China)

  • Linjing Xiao

    (College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

State of charge (SOC) estimation is of great significance for the safe operation of lithium-ion battery (LIB) packs. Improving the accuracy of SOC estimation results and reducing the algorithm complexity are important for the state estimation. In this paper, a zeroaxial straight line, whose slope changes along with SOC, is used to map the predictive SOC to the predictive open circuit voltage (OCV), and thus only one parameter is used to linearize the SOC-OCV curve near the present working point. An equivalent circuit model is used to simulate the dynamic behavior of a LIB, updating the linearization parameter in the measurement equation according to the present value of the state variables, and then a standard Kalman filter is used to estimate the SOC based on the local linearization. This estimation method makes the output equation of the nonlinear battery model contain only one parameter related to its dynamic variables. This is beneficial to simplify the algorithm structure and to reduce the computation cost. The linearization method do not essentially lose the main information of the dynamic model, and its effectiveness is verified experimentally. Fully and a partially charged battery experiments indicate that the estimation error of SOC is better than 0.5%.

Suggested Citation

  • Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7854-7873:d:53426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/7854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/7854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
    2. Shifei Yuan & Hongjie Wu & Chengliang Yin, 2013. "State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model," Energies, MDPI, vol. 6(1), pages 1-27, January.
    3. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    4. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    5. Yong Tian & Chaoren Chen & Bizhong Xia & Wei Sun & Zhihui Xu & Weiwei Zheng, 2014. "An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(9), pages 1-18, September.
    6. Caiping Zhang & Jiuchun Jiang & Weige Zhang & Suleiman M. Sharkh, 2012. "Estimation of State of Charge of Lithium-Ion Batteries Used in HEV Using Robust Extended Kalman Filtering," Energies, MDPI, vol. 5(4), pages 1-18, April.
    7. Truchot, Cyril & Dubarry, Matthieu & Liaw, Bor Yann, 2014. "State-of-charge estimation and uncertainty for lithium-ion battery strings," Applied Energy, Elsevier, vol. 119(C), pages 218-227.
    8. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.
    2. Ibrahim M. Safwat & Weilin Li & Xiaohua Wu, 2017. "A Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation," Energies, MDPI, vol. 10(11), pages 1-16, November.
    3. Zuchang Gao & Cheng Siong Chin & Joel Hay King Chiew & Junbo Jia & Caizhi Zhang, 2017. "Design and Implementation of a Smart Lithium-Ion Battery System with Real-Time Fault Diagnosis Capability for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-15, September.
    4. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    5. Sahar Khaleghi & Yousef Firouz & Maitane Berecibar & Joeri Van Mierlo & Peter Van Den Bossche, 2020. "Ensemble Gradient Boosted Tree for SoH Estimation Based on Diagnostic Features," Energies, MDPI, vol. 13(5), pages 1-16, March.
    6. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    7. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    8. Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
    9. Donghoon Shin & Beomjin Yoon & Seungryeol Yoo, 2021. "Compensation Method for Estimating the State of Charge of Li-Polymer Batteries Using Multiple Long Short-Term Memory Networks Based on the Extended Kalman Filter," Energies, MDPI, vol. 14(2), pages 1-19, January.
    10. Wiesław Madej & Andrzej Wojciechowski, 2021. "Analysis of the Charging and Discharging Process of LiFePO 4 Battery Pack," Energies, MDPI, vol. 14(13), pages 1-12, July.
    11. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    12. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    13. Abdelhak Boudallaa & Ahmed Belkhadir & Mohammed Chennani & Driss Belkhayat & Youssef Zidani & Karim Rhofir, 2023. "Real-Time Implementation of Sensorless DTC-SVM Applied to 4WDEV Using the MRAS Estimator," Energies, MDPI, vol. 16(20), pages 1-23, October.
    14. Shih-Wei Tan & Sheng-Wei Huang & Yi-Zeng Hsieh & Shih-Syun Lin, 2021. "The Estimation Life Cycle of Lithium-Ion Battery Based on Deep Learning Network and Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-21, July.
    15. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    16. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    18. Jakub Matoušek & Jindřich Duník & Ondřej Straka, 2020. "Density Difference Grid Design in a Point-Mass Filter," Energies, MDPI, vol. 13(16), pages 1-17, August.
    19. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Dhiman, Harsh S. & Deb, Dipankar, 2020. "Wake management based life enhancement of battery energy storage system for hybrid wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    2. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    3. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    4. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    6. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    7. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    8. Shifei Yuan & Hongjie Wu & Xuerui Ma & Chengliang Yin, 2015. "Stability Analysis for Li-Ion Battery Model Parameters and State of Charge Estimation by Measurement Uncertainty Consideration," Energies, MDPI, vol. 8(8), pages 1-23, July.
    9. Avvari, G.V. & Pattipati, B. & Balasingam, B. & Pattipati, K.R. & Bar-Shalom, Y., 2015. "Experimental set-up and procedures to test and validate battery fuel gauge algorithms," Applied Energy, Elsevier, vol. 160(C), pages 404-418.
    10. James Marco & Neelu Kumari & W. Dhammika Widanage & Peter Jones, 2015. "A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems," Energies, MDPI, vol. 8(8), pages 1-19, August.
    11. Zhongwei Deng & Lin Yang & Yishan Cai & Hao Deng, 2016. "Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries," Energies, MDPI, vol. 9(6), pages 1-16, June.
    12. Liu, Guangming & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Hua, Jianfeng, 2015. "A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications," Applied Energy, Elsevier, vol. 149(C), pages 297-314.
    13. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.
    14. Yong Tian & Chaoren Chen & Bizhong Xia & Wei Sun & Zhihui Xu & Weiwei Zheng, 2014. "An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(9), pages 1-18, September.
    15. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    16. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    17. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    18. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    19. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7854-7873:d:53426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.