IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1503-d113447.html
   My bibliography  Save this article

Design and Implementation of a Smart Lithium-Ion Battery System with Real-Time Fault Diagnosis Capability for Electric Vehicles

Author

Listed:
  • Zuchang Gao

    (School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore)

  • Cheng Siong Chin

    (Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK)

  • Joel Hay King Chiew

    (School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore)

  • Junbo Jia

    (School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore)

  • Caizhi Zhang

    (School of Automotive Engineering, Chongqing University, Chongqing 400044, China)

Abstract

Lithium-ion battery (LIB) power systems have been commonly used for energy storage in electric vehicles. However, it is quite challenging to implement a robust real-time fault diagnosis and protection scheme to ensure battery safety and performance. This paper presents a resilient framework for real-time fault diagnosis and protection in a battery-power system. Based on the proposed system structure, the self-initialization scheme for state-of-charge (SOC) estimation and the fault-diagnosis scheme were tested and implemented in an actual 12-cell series battery-pack prototype. The experimental results validated that the proposed system can estimate the SOC, diagnose the fault and provide necessary protection and self-recovery actions under the load profile for an electric vehicle.

Suggested Citation

  • Zuchang Gao & Cheng Siong Chin & Joel Hay King Chiew & Junbo Jia & Caizhi Zhang, 2017. "Design and Implementation of a Smart Lithium-Ion Battery System with Real-Time Fault Diagnosis Capability for Electric Vehicles," Energies, MDPI, vol. 10(10), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1503-:d:113447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhihao Yu & Ruituo Huai & Linjing Xiao, 2015. "State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization," Energies, MDPI, vol. 8(8), pages 1-20, July.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    2. Xiaolin Wang & Ka Wai Eric Cheng & Yat Chi Fong, 2018. "Non-Equal Voltage Cell Balancing for Battery and Super-Capacitor Source Package Management System Using Tapped Inductor Techniques," Energies, MDPI, vol. 11(5), pages 1-12, April.
    3. Hongrui Liu & Bo Li & Yixuan Guo & Chunfeng Du & Shilong Chen & Sizhao Lu, 2018. "Research into an Efficient Energy Equalizer for Lithium-Ion Battery Packs," Energies, MDPI, vol. 11(12), pages 1-11, December.
    4. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    5. Bumin Meng & Yaonan Wang & Jianxu Mao & Jianwen Liu & Guochang Xu & Jian Dai, 2018. "Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat," Energies, MDPI, vol. 11(3), pages 1-20, March.
    6. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
    7. Shun Xiang & Guangdi Hu & Ruisen Huang & Feng Guo & Pengkai Zhou, 2018. "Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints," Energies, MDPI, vol. 11(2), pages 1-20, January.
    8. Xiao Yang & Long Chen & Xing Xu & Wei Wang & Qiling Xu & Yuzhen Lin & Zhiguang Zhou, 2017. "Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization," Energies, MDPI, vol. 10(11), pages 1-16, November.
    9. Cheng Siong Chin & Zuchang Gao & Joel Hay King Chiew & Caizhi Zhang, 2018. "Nonlinear Temperature-Dependent State Model of Cylindrical LiFePO 4 Battery for Open-Circuit Voltage, Terminal Voltage and State-of-Charge Estimation with Extended Kalman Filter," Energies, MDPI, vol. 11(9), pages 1-28, September.
    10. Chuan-Wei Zhang & Ke-Jun Xu & Lin-Yang Li & Man-Zhi Yang & Huai-Bin Gao & Shang-Rui Chen, 2018. "Study on a Battery Thermal Management System Based on a Thermoelectric Effect," Energies, MDPI, vol. 11(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    2. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    3. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    7. Bian, Chong & He, Huoliang & Yang, Shunkun, 2020. "Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 191(C).
    8. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    9. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    10. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    11. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
    12. Jinqing Linghu & Longyun Kang & Ming Liu & Bihua Hu & Zefeng Wang, 2019. "An Improved Model Equation Based on a Gaussian Function Trinomial for State of Charge Estimation of Lithium-ion Batteries," Energies, MDPI, vol. 12(7), pages 1-15, April.
    13. Chaoran Li & Fei Xiao & Yaxiang Fan, 2019. "An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit," Energies, MDPI, vol. 12(9), pages 1-22, April.
    14. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    15. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    16. Deng Ma & Kai Gao & Yutao Mu & Ziqi Wei & Ronghua Du, 2022. "An Adaptive Tracking-Extended Kalman Filter for SOC Estimation of Batteries with Model Uncertainty and Sensor Error," Energies, MDPI, vol. 15(10), pages 1-18, May.
    17. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
    18. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    19. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    20. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1503-:d:113447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.